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Abstract

INSTRUCTABLE AUTONOMOUS AGENTS

by

Scott Bradley Huffman

Chair: John E. Laird

In contrast to current intelligent systems, which must be laboriously programmed for each task

they are meant to perform, instructable agents can be taught new tasks and associated knowledge.

This thesis presents a general theory of learning from tutorial instruction and its use to produce

an instructable agent. Tutorial instruction is a particularly powerful form of instruction, because
it allows the instructor to communicate whatever kind of knowledge a student needs at whatever

point it is needed. To exploit this broad flexibility, however, a tutorable agent must support a

full range of interaction with its instructor to learn a full range of knowledge. Thus, unlike most

machine learning tasks, which target deep learning of a single kind of knowledge from a single kind

of input, tutorability requires a breadth of learning from a broad range of instructional interactions.

The theory of learning from tutorial instruction presented here has two parts. First, a compu-

tational model of an intelligent agent, the problem space computational model, indicates the types

of knowledge that determine an agent's performance, and thus, that should be acquirable via in-

struction. Second, a learning technique, called situated explanation, specifies how the agent learns

general knowledge from instruction. The theory is embodied by an implemented agent, Instructo-

Soar, built within the Soar architecture. Instructo-Soar is able to learn hierarchies of completely

new tasks, to extend task knowledge to apply in new situations, and in fact to acquire every type

of knowledge it uses during task performance - control knowledge, knowledge of operators' effects,

state inferences, etc. - from interactive natural language instructions. This variety of learning

occurs by applying the situated explanation technique to a variety of instructional interactions

involving a variety of types of instructions (commands, statements, conditionals, etc.). By taking

seriously the requirements of flexible tutorial instruction, Instructo-Soar demonstrates a breadth of

interaction and learning capabilities that goes beyond previous instructable systems, such as learn-

ing apprentice systems. Instructo-Soar's techniques could form the basis for future "instructable

technologies" that come equipped with basic capabilities, and can be taught by novice users to

perform any number of desired tasks.
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Chapter 1

Introduction

The intelligent, autonomous agents of the future will be called upon to perform a wide and

varying range of tasks, under a wide range of circumstances, over the course of their lifetimes.

Performing these tasks requires knowledge. If the number of possible tasks and circumstances is

large and variable over time (as it will be for a general, flexible agent), it becomes nearly impossible

to pre-program an agent with all of the required knowledge. Thus, the agent needs the ability to

learn as a part of its ongoing performance.

One powerful way that people acquire the knowledge needed to perform new tasks is through

tutorial instruction. Tutorial instruction is a highly interactive dialogue that focuses on the specific

task(s) being performed. Its power comes from allowing the instructor to communicate whatever

kind of knowledge a student needs at whatever point it is needed. The challenge for a tutorable agent

is to support the full breadth of interaction and learning that arises from this flexible communication

of knowledge.

The goal of this thesis is to present a general theory of learning from tutorial instruction. The

theory has been developed by determining both general and specific requirements that tutorability

places on intelligent agents. These requirements encompass the ways an agent interacts with its

instructor, comprehends instructions, and learns from them. The requirements serve as evaluation

criteria for theories of instructional learning and implemented instructable systems, including the
one described here.

Thus, the work to be presented has four major parts:

1. A specification of the problem of learning from tutorial instruction, and of the requirements

it places on a complete tutorable agent.

2. A theory of learning from tutorial instruction. The theory includes a computational model of

an intelligent agent and a learning technique for learning from instruction. The computational

model indicates the types of knowledge that determine an agent's performance, and thus, that

should be acquirable via instruction. The learning technique specifies how the agent acquires

general knowledge from instructions.

3. An implemented instructable agent that embodies the theory. The agent, called Instructo-Soar

[Huffman and Laird, 1993b; Huffman and Laird, 1993a], is built within the Soar architecture

[Laird et al., 1987]. Instructo-Soar learns to perform new tasks, extends known tasks to apply
in new situations, and acquires a variety of types of domain knowledge, from interactive

natural language instructions.

4. An evaluation of the agent based on the requirements for complete tutorability. The evaluation

indicates that Instructo-Soar supports a broader range of instructional interaction and learning

than previous instructable systems. In particular:

a. The agent can learn each of the types of knowledge it uses in task performance from
instruction.



b. The agent supports fully flexible interaction for instructions commanding actions, allow-

ing the instructor to give an)' command at any point during instruction, whether or not

the agent knows the how to perform the commanded task.

c. The agent can learn both from instructions that apply to the situation at hand (e.g.,

imperative commands like "Do X now"), and from instructions that apply to specified

hypothetical situations (e.g., conditionals like "If the situation is .... then do X").

These capabilities combine to produce nineteen distinct interaction and learning behaviors.

A key contribution is that this breadth of behavior is produced not by nineteen different

mechanisms, but by a single theory applied across a breadth of tutorial learning tasks.

A secondary goal has been to evaluate the theory as a cognitive model of human tutorial learning

[Huffman et al., 1993a]. The results are broadly consistent with what is known about human pro-

cedural learning, and make some specific behavioral predictions. These are discussed in Chapter 5.

The remainder of this chapter discusses the properties and requirements of tutorial instruction.

An analysis of the task faced by a tutorable agent identifies three major task components, corre-

sponding to capabilities for language comprehension, interaction, and learning. For each of these

components, the requirements for complete tutorability are identified. The chapter concludes with

a discussion of related work in AI and cognitive science, and an outline of the rest of the thesis.

1.1 Properties of tutorial instruction

For the purposes of this thesis, tutorial instruction is defined as instruction given to an agent as

it attempts to perform tasks in some domain. The instruction is both situated and interactive. It
is situated in that it applies to particular task situations that arise while the agent is acting in the

domain. It is interactive in that the agent may request instruction as needed to complete tasks or to

understand aspects of the domain or of previous instructions. This type of instruction is common

in dialogues between experts and apprentices working on various tasks [Grosz, 1980; Grosz, 1977].

A segment of tutorial instruction, given to the Instructo-Soar agent within a robotic domain, is

shown in Figure 1.1.

Tutorial instruction can be viewed as a way of incrementally eliciting knowledge from an instruc-

tor. It has a number of properties that make this elicitation easy and flexible for the instructor:

P1.

P2.

Situation specificity. Instructions are given for particular tasks in particular situations. To

teach a task, the instructor need only provide suggestions for the specific situation at hand,

rather than producing a global procedure that includes general conditions for applicability of

every step, handling of all possible contingencies, etc. A number of authors have described

the advantages of situation specific knowledge elicitation (e.g., [Davis, 1979; Gruber, 1989]).

When instructions apply to the current situation, the situation can help to disambiguate them

during their interpretation. Actions are performed in the world when they are instructed,

giving the instructor direct feedback about their effects. Thus, when teaching a task, the

instructor does not need to predict the effects of long instruction sequences, or reason about

the effects an action might have in other situations.

Situation specification as needed. Although instructions typically apply to the situation

at hand, the instructor has the freedom to specify other situations as needed. For instance,

the instructor may wish to indicate a course of action for a contingency that has not come

up during ongoing task performance (perhaps because it is rare or dangerous). Conditional

instructions are an example: "If the fluid in the cutting machine runs low, turn it off im-

mediately." This type of instruction has been termed ezplicitly situated [Huffman and Laird,

1992]; the language of the instruction explicitly indicates aspects of the situation it applies
to. Explicitly situated instructions allow the instructor to specify different levels of generality,

from general advice, such as "Never touch a hot stove," or "Whenever the light is on, push
the button," to specific steps within performance of specific tasks, such as "After you have

assembled its housing, place the gasket over the left manifold."



Pick up the red block.
How do I do that?

Move to the yellow table.
Ok. What next?
Move the arm above the red block.

How do I do that ?

Move up.
Oh, I see! What next?

Move down.

Ok. What next?
Close the hand.

Ok. What next?

Move up.
Ok. What next?

The operator is finished.

Go home.
Push the button.

How do l do that?

Move to the grey table.
Ok. What next?
Move above the button.

Ok. What next?
Move down.
Ok. What next?

The operator is finished.

To turn on the light, push the button.
Does this mean that pushing the button
causes the light to come on ?
Yes.

If the magnet is on, turn it off.
...

Figure 1.1: An example of tutorial instruction.



P3. Incremental as-needed elicitation. Knowledge acquisition occurs incrementally as a part

of the agent's ongoing performance. Instructions are given when the agent is unable to perform

a task; thus, they directly address points where the agent's knowledge is lacking.

P4. Task structuring by instructor. The instructor is free to structure larger tasks into

smaller subtasks in any way desired. For instance, a task requiring ten primitive steps may be

taught as a simple sequence of the ten steps, or as two subtasks of five steps each, etc. Since

the agent can request additional instruction as needed, the instructor can indicate whatever

action/subtask is deemed appropriate in a given situation, without worrying whether the

agent already has knowledge of the action/subtask. If the agent does not know what an
instructed action is, or how to perform it in the situation at hand, more instruction will be

requested.

P5. Knowledge-level interaction. The instructor provides knowledge to the agent at the knowl-

edge level [Newell, 1981], because the instructions refer to objects and actions in the world,

not to symbol-level structures (e.g., data structures) within the agent. The interaction occurs

in natural language, the language that the instructor uses to talk about the task, rather than

requiring artificial terminology and syntax to specify the agent's internal data structures and

processes.

Because tutorial instruction typically provides knowledge applicable to the agent's current situ-

ation or a closely related one, it is most appropriate for tasks with a local control structure. In tasks

with local control structure, control decisions are made based on presently available information.

Global control strategies, on the other hand, either follow a fixed regime or require an aggrega-

tion of information from multiple problem solving states to make control decisions. Local control

structure is characteristic of constructive synthesis tasks, in which primitive steps are composed

one after another to form a complete solution. In contrast, problem solving methods like constraint

satisfaction and heuristic classification involve global control.

It is possible to produce a global control strategy using a combination of local decisions [Yost

and Newell, 1989]. However, teaching a global method by casting it purely as a sequence of local
decisions may be difficult. To acquire knowledge for tasks that involve global control, it may be

more efficient to use a method-based knowledge acquisition tool (e.g., [Eshelman et al., 1987; Musen,

1989; Marcus and McDermott, 1989; Birmingham and Siewiorek, 1989]) with the control strategy

built in. This thesis focuses on instructing tasks with local control structure.

1.2 An analysis of the instructable agent's task

While allowing the instructor to provide knowledge in an easy and flexible way, the properties
of tutorial instruction described above place severe requirements on an instructable agent. Such an

agent is required to interact with its instructor, to behave or respond appropriately to instructions

it is given, and to learn general knowledge from these instructions for use in future situations.

Thus, the agent must perform three conceptually distinct but interrelated functions, each arising

from various tutorial instruction properties described above:

1. The operations, objects, and relations specified in each instruction must be mapped onto

the corresponding entities in the agent's internal representation of the task and context, as

illustrated in Figure 1.2. This is required for the agent to apply the knowledge that is com-

municated by the instruction at the knowledge level (property PS) to its internal processing.

The mapping task can be difficult, involving all of the problems of linguistic interpretation.

In general, it may involve reasoning about the task and domain itself. For example, the

agent may need to use task knowledge to find an operator with specified effects, or pragmatic

knowledge to resolve referents.

This is the mapping problem.

2. The agent must interact with the instructor in a flexible way to obtain instructions and advice.

This interaction may be driven by the agent or by the instructor, and occurs during the
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Figure 1.2: The mapping problem.

agent's ongoing performance to address its lacks of knowledge (property P3). The agent must

be flexible in handling instructions that relate to the ongoing task situation and instructional

dialogue in different ways; for instance, that apply to different kinds of situations (properties

P1 and P2) or that structure tasks in different ways (property P4).

This is the interaction problem.

3. Finally, the agent should learn as much general long-term knowledge as possible from instruc-

tions. Many types of knowledge may be learned, since instructions can provide any type of

knowledge that the agent is lacking (property P3). From instructions that apply to specific

situations (property P1), the agent must learn general knowledge that will transfer to appro-

priate situations that arise in the future. Thus, the scope of applicability of each instruction

must be accurately determined. To what range of situations does it apply? That is, which

situational features are important for its application, and which can be generalized over?

This is the transfer problem.

These problems are distinct but closely interrelated. For instance, if instructions that carry a

certain type of knowledge cannot be mapped, then they cannot be given (limiting interaction) or

learned from (limiting transfer). Limiting interaction to certain types of instructions at certain
times may make it difficult to learn some type of task knowledge (limiting transfer), because the

instructor cannot teach it in a natural way.

In what follows, requirements for a complete solution to each of these three problems are iden-

tified. Taken together, these requirements form the criteria for a complete _atorable agent. The

following sections also indicate which requirements are met by the theory described in the rest
of the thesis. This research has focused on the transfer problem and key parts of the interaction

problem; approaches to the mapping problem and to the most open-ended aspects of the interaction

problem are less developed.

1.2.1 The mapping problem

The mapping problem is the problem of transforming language input into the internal language

of the agent. Both the domain and the range of the mapping make the problem difficult. First,

natural language is complex, making its interpretation difficult. Second, the information that

instructions are mapped to may be complex, containing a variety of parameters, constraints, and
conditions.

Solving this problem in general is extremely difficult, and has not been the focus of this work.

Rather, fairly standard natural language processing (NLP) techniques have been applied to allow
communication about a sufficient range of actions and situations to demonstrate the learning theory.



The mapping problem will only be discussed as needed in the rest of the thesis to explain the

implemented agent's operation. However, as it is crucial for the construction of tutorable agents,

some of the general issues involved are discussed here. A number of sample instructions are used

as examples. These have been collected from various sources: protocols of subjects instructing a

simulated robot; a teacher instructing a student to use a flight simulator; a cookbook, a computer

manual, and various device manuals.

Complexity of natural language

Because of language's flexibility, instructions may be expressed in many different ways. Just

and Carpenter [1976] point out that complicated instructions can be given for very simple tasks,

making "following the instructions" primarily a comprehension task. In general, instruction may

contain difficult constructions such as indirect speech acts, analogies and metaphors, etc.

Even if these types of constructions are disallowed, two difficult problems in interactive in-

struction are referent resolution and incompleteness. Referent resolution - determining what a

noun phrase refers to - has been the topic of multiple Ph.D. theses (e.g., [Gershman, 1979; Grosz,

1977]). Grosz [1980,1977] specifically targeted referent resolution in expert/apprentice dialogues.

Many standard reference problems appear in the sample instructions that have been collected, such

as anaphors, comparatives and superlatives, generics, references to composite constructions, and

episodic references.
Incompleteness is the problem of an action or other information being incompletely specified by

an instruction. This is extremely common; the instructor expects the student to fill in details that

are left out, using linguistic context, knowledge of the domain, or perhaps domain-general common

sense knowledge. For example:

• Move arm to the right. How far?

• Sprinkle with seasoned salt. Sprinkle what? How much?

• Pull back left. How fast? For how long?

Some of these are examples of ellipsis, where the missing information can be filled in by looking at

the linguistic context [Frederking, 1988]. Other cases require domain knowledge or task context.

For example, in Sprinkle with seasoned salt, the agent must use domain knowledge about seasoned

salt, perhaps about what amount is typically used, to further specify the sprinkling action. Martin

and Firby [1991] and Chapman [1990] describe techniques for using the current execution context

to deal with incompleteness; DiEugenio and Webber [1992] discuss a process for interpreting some

types of incomplete instructions using domain knowledge. However, no system has dealt with the

full range of incomplete instructions.

Complexity of information being mapped

In addition to the complexity of natural language, the mapping problem is difficult because the

information carried by instructions is complex. For example, specifying an action in an instruction

may require various arguments (objects, instruments, etc); actions may be repetitive, conditional,

concurrent with other events; they may have duration, rate, directionality, and so on. Language is

flexible enough to express any of these parameters.

It would be difficult (and it is outside of the scope of this work) to characterize all of the possible

types of actions and their parameters, linguistically or functionally. However, a few examples from

our instruction samples, classified in an ad-hoc manner, will illustrate the complexity and variability:

1. Actions with definitive start and end points and standard parameters (e.g., actor, object,

instrument, location).

• Pick up the red block.

• Melt butter in a skillet.



1. main action/state
2. cause
3. manner
4. purpose
5. result
6. figure (for motion event)
7. path (for motion event)
8. ground (for motion event)
9. degree of realization ("barely", "almost")

10. phase (starting vs. stopping, initiating vs. finishing)
11. aspect (the pattern of distribution through time of an action or state; "hit" vs. "beat")
12. rate
13. causativity (event occurs itself vs. volitionally)
14. person - relation between an actor and the speaker. E.g. "I', "you", "they."
15. relation to comparable events (whether action occurs alone, in addition to, or in place of comparable

events - "He only danced", "He also danced", etc.).
16. temporal setting
17. spatial setting
18. direction (of motion)

Table 1.1: Some of Talmy's semantic categories for motion constructions [Talmy, 1985]

. Turn back to the airport.

2. Actions expressed as constraints to satisfy.

• Place it on the rightmost side of the red block, so it's still standing.

• Try to keep the horizon just exactly perpendicular.

• Load a cassette with the edge where the tape is exposed down and the side you want to

record on facing you.

3. Negative expressions that constrain action.

• Keep the unit as far as possible from a TV set.

• You don't want to use flaps unless you're taking off.

• Be careful to make your password something that is not obvious.

4. Continuous actions with explicit monitoring conditions delineating their end point.

• Adjust the REC LEVEL controls so that each meter needle deflects no further than 0

VU.

• Hit thrust until we're at full throttle.

• Add coconut and saute until light brown, stirring constantly.

Unfortunately, a complete characterization of actions that may need to be mapped from instruc-

tion is hard to find. There have been some limited attempts to characterize the space of possible

actions in AI (e.g., [Schank, 1975; Wilks, 1975]) and linguistics (e.g, [Talmy, 1985; Miller and

Johnson-Laird, 1976]). Talmy [1985], for instance, analyzes the semantics of utterances specifying

motion, laying out a dizzying thirty-seven motion-related semantic categories. Some of the most
relevant are shown in Table 1.1. There is clearly a great amount of work to be done on understand-

ing the space of possible actions and their parameters, and how linguistic constructions map onto

this space.

Defining the requirements that the mapping problem places on a completely tutorable agent is

straightforward. A complete tutorable agent must have the ability to correctly comprehend and

map all aspects of an utterance that fall within the scope of information it can possibly represent.

An agent cannot be expected to interpret aspects that fall outside its representation abilities. For

example, if an agent has no representation of aspect (number 11 in Table 1.1), it cannot be expected



to correctlymapthe differencebetween"Hit thedrum"and "Beatthedrum." Representation
abilities may be augmented through instruction, but this occurs by building up from existing

abilities.

This work has not emphasized the mapping problem, and Instructo-Soar does not meet the

complete mapping requirement, but rather performs mapping as needed to demonstrate its other

capabilities.

1.2.2 The interaction problem

The interaction problem is the problem of supporting flexible dialogue with an instructor. An

instructable agent moves towards a complete solution to the interaction problem to the degree that

it provides freedom of interaction to the instructor. The properties of flexible interaction can be

specified in terms of individual instruction events, where an instruction event is the receiving of

a single instruction at a particular point in the ongoing task and discourse context. A complete

tutorable agent must be able to handle any instruction event that is coherent at the current point

in the ongoing discourse. Each instruction event:

1. Is initiated by someone - either the student or the teacher.

2. Carries a piece of knowledge of a particular type; e.g., a command to do a particular action,

an inference to be made in a particular state, etc. (knowledge types are described more fully

in Chapter 2).

3. Applies to a situation - either the current situation at hand or some specified situation.

"Any possible" instruction event can be generated by taking the cross product of possibilities of
each of these three dimensions. Thus, a complete tutorable agent must support instruction events

with:

1. Flexible initiation. Instruction events can be initiated by agent or instructor.

2. Flexibility of knowledge content. The knowledge carried by an instruction event can be

any piece of any of the types of knowledge that the agent uses, provided the knowledge is

applicable in some way within the ongoing task and discourse context.

3. Situation flexibility. An instruction event can apply either to the current task situation,

or to some specified hypothetical situation.

Unfortunately, like the mapping problem, the general interaction problem is extremely difficult,

because the space of possible instruction events is enormous. This work does not present a complete

solution; however, by targeting the dimensions of flexible knowledge content and situation flexibility,

a broader range of interaction capabilities than previous systems is achieved. The following sections
discuss each dimension of the interaction problem in more detail.

Flexible initiation

In human tutorial dialogues, initiation of instruction is mixed between student and teacher.

One study indicates that teacher initiation is more prevalent early in instruction; student initiation
increases as the student learns more, and then drops off again, as the student masters the task

[Emihovich and Miller, 1988]. Teacher initiation may dominate early on because the student has
so little knowledge that the teacher assumes instruction will be constantly needed.

Supporting teacher-initiated instruction events is difficult because the instruction event inter-

rupts other ongoing processing that the agent may be engaged in. Upon interrupting the agent,
an instruction event may alter the agent's knowledge in a way that could change or invalidate the

reasoning the agent was previously engaged in. Because of these difficulties, instructable systems,

learning apprentice systems, and interactive knowledge acquisition tools to date have not supported

fully instructor-initiated instruction events. Likewise, in this work, instructor-initiated instruction

events are not supported.



Agent-initiated instruction can be directed in (at least) two possible ways: verification driven
or impasse driven. Some learning apprentice systems, such as LEAP [Mitchell el at., 1990] and

DISCIPLE [Kodratoff and Tecuci, 1987b] ask the instructor to verify or alter each reasoning step.

The advantage of this approach is that each step is examined by the instructor; the disadvantage,

of course, is that each step must be examined.

An alternative approach is to drive instruction requests by impasses in the agent's task perfor-

mance [Golding et al., 1987; Laird et al., 1990]. This is the approach followed here. An impasse

in task performance indicates that the agent's knowledge is lacking and it needs instruction. The

advantage of this approach is that as the agent learns, it becomes more autonomous; its need for
instruction decreases over time. The disadvantage is that not all lacks of knowledge can be recog-

nized by reaching impasses; for example, an impasse will not occur when a task solution is correct

but inefficient. The agent described here also asks for verification when it attempts to induce new

knowledge (not verification of performance, but of learning).

Flexibility of knowledge content

A complete tutorable agent must handle instruction events involving any knowledge that is

applicable in some way within the ongoing task and discourse context. Similar to the notion of

discourse coherence [Mann and Thompson, 1988], a complete tutorable agent needs to support any

instruction event with knowledge coherence; that is, any instruction event delivering knowledge

that makes sense in current context. This requirement is difficult to meet in general, because of the

wide range of knowledge that may be considered relevant to any particular situation (e.g., obscure

analogies). Accepting any utterance the instructor might make at any point requires a powerful

ability to relate each utterance to the ongoing discourse and task situation. No instructable systems

have met this requirement fully.

However, Instructo-Soar meets the flexible knowledge content requirement for one particular

class of instructions: action specifications (i.e., imperative commands). This type of instruction is

especially prevalent in tutorial instruction for procedures. Supporting flexible knowledge content for
this class of instruction means that the instructor is free to give any command at any point during

task performance, without concern for whether the agent knows how to perform the command yet
or not.

For any given command, there are three possibilities: (1) the commanded action is known,

and the agent performs it; (2) the commanded action is known, but the agent does not know how

to perform it in the current situation (extra unknown steps are required); or (3) the commanded

action is unknown. Thus, supporting flexible knowledge content for commands means that while

leading the agent through a task, the instructor may skip steps (possibility 2) or command unknown

subtasks (possibility 3) at any point. If the agent knows how to achieve any skipped steps and the

commanded action, it will do so. If not, it will reach an impasse and ask for more instruction.

The theory of tutorial instruction described here assumes that when an imperative command is

given in response to a task impasse, the command applies to the most recent unachieved goal, as

opposed to some higher level goal or an unrelated event. This constraint, called the one-goal-at-a-

time constraint, is assumed as a felicity condition of tutorial instruction; that is, a communication

convention that is naturally followed [VanLehn, 1987]. The interaction pattern that results, in

which procedures are commanded and then taught as needed, has been observed in human tutorial

instruction. As Wertsch [1979] observes: "...adults spontaneously follow a communication strategy

in which they use directives that children do not understand and then guide the children through

the behaviors necessary to carry out these directives."

The example in Table 1.2 illustrates commanding unknown actions and skipping steps. The

first command, "Pick up the red block," is a completely unknown procedure to the agent, and

further instruction is requested. This further instruction may include other completely unknown

tasks (an example of this is given in Appendix A). In this case, while teaching "pick up", the

instructor asks the agent to "Move the arm above the red block." This procedure is known, but

has the precondition that the arm must be raised. However, the arm is lowered; the instructor has

skipped the step of moving the hand up. After being told to "Move up," the agent is able to move
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Pickupthe red block.

Move to the yellow table.
Move the arm above the red block.

Move up.
Move down.

Close the hand.

Move up.

The operator is finished.

Table 1.2: Instructions for "Pick up."

above the red block. Notice the non-canonical sequence of instructions that results: "Move down"

immediately follows "Move up" in the instruction sequence, but not in execution.

Supporting flexible interaction for commands gives the instructor a great amount of flexibility

in teaching a set of tasks. Appendix B presents a mathematical analysis of the number of possible
sequences of instructions that can be used to teach a given procedure. The number grows exponen-

tially with the number of actions that must be executed to perform the procedure. For a procedure

with six actions, there are over 100 possible instruction sequences; for seven, the number grows to
over 400.

The implemented agent handles other types of instructions besides action commands at appro-

priate points in the ongoing dialogue between the agent and the instructor, but not in a completely

flexible way, as described in Chapters 3 and 4.

Situation flexibility

A complete tutorable agent must handle instructions that apply to whatever situation the in-

structor pleases, be it the current task situation, or some hypothetical situation that the instructor

specifies. Instructors make frequent use of both of these options. Analysis of a protocol of a stu-

dent being taught to use a flight simulator revealed that 119 out of 508 instructions (23%) involved

hypothetical situations, with the remainder applying to the current situation at the time they were

given.

Instructions that apply to the current situation are called implicitly situated [Huffman and Laird,

1992]; the situation they are intended to apply to is implicit rather than explicitly stated. Since

the instruction itself says nothing about the situation it should be applied in, the current situation

(the task being performed and the current state) is implied.

As an example, consider the following exchange from a protocol of an instructor teaching a
simulated robot:

Pick up the block.
I don't know how.

To start, you need to get the robot arm over the block.

Now, put your hand on top of the block and grab it.

Then, lift again.

That's the end of 'pick up the block.'

Each of these instructions is implicitly situated. For instance, "Then, lift again" applies to the

higher level task "Pick up the block," in the state where the arm is holding the block and the block
is on the table.

In contrast, instructions that specify elements of the situation they are meant to apply to are

ezplicitly situated [Huffman and Laird, 1992]. The language of the instruction explicitly indicates

a hypothetical situation. The agent is not meant to carry out the instruction immediately (as an

implicitly situated instruction), but rather when a situation arises that is like the one specified by
the instruction.
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A simpleexampleis:

Never touch a hot stove.

Here, the language indicates that the instruction applies whenever there is a hot stove present.
no matter what other tasks are being performed. Other explicitly situated instructions include

conditionals and instructions with purpose clauses [DiEugenio, 1992], such as:

For normal tape, employ the SF/NORM position.

When using chocolate chips, add them to coconut mixture just before

pressing into pie pan.

To restart this, you can hit R or shift-R.

As a number of researchers have pointed out [Ford and Thompson, 1986; Johnson-Laird, 1986;

Haiman, 1978], conditional clauses introduce a shared reference between speaker and hearer that

forms an explicit background for interpreting or evaluating the consequent. 1 Here, the clauses in

italics indicate a hypothetical situation that the command in the remainder of the instruction is

meant to apply to. In most cases, the situation is only partially specified, with the remainder drawn

from the current situation, as in "When using chocolate chips [and cooking this recipe, and at the

current point in the process]..."

Explicitly situated instructions allow the instructor to indicate contingencies while teaching

a particular case of a procedure, or to describe courses of action for situations that are rare or

dangerous, and thus would be difficult to teach using implicitly situated instructions. Explicitly
situated instructions are also useful for "going back" to teach about a situation that has already

passed by. This can be important in dynamic domains where the situation is continually changing.

In general, a hypothetical situation may be created and referred to across multiple utterances.

A complete tutorable agent must be able to handle this possibility. An example taken from the

flight simulator protocol is shown in Table 1.3. This entire sequence of instructions applies to a

series of related hypothetical situations, in which the plane has taken off and the flaps must be

lowered. None of the instructions in the sequence is actually carried out in the real world when it

is given.

The theory presented here covers both implicitly and explicitly situated instructions, as de-

scribed in Chapter 2. However, the implemented agent's situation flexibility is limited to sin-

gle instructions; hypothetical situations that exist through multiple utterances are not handled.

Instructo-Soar's performance on implicitly situated instructions is described in Chapters 3, and on

explicitly situated instructions in Chapter 4.

Table 1.4 summarizes the requirements of the interaction problem.

1.2.3 The transfer problem

The transfer problem is the problem of learning generally applicable knowledge from instructions.

This general knowledge will transfer to appropriate situations that arise in the future. Solving this

problem involves more than simply memorizing the instructions; rather, the proper conditions of

applicability of each instruction must be determined.

For example, consider the following exchange between an instructor and an agent:

Block open our office door.
How do I do that?

Pick up a red block.
OK.

Now, drop it here, next to the door.

1Some types of conditionals do not follow this pattern [Akatsuka, 1986], but they are not relevant to tutorial

instruction.
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Speaker

Instructor

Student

Instructor

Student

Instructor

Instruction

You have some flaps, which are control surfaces on your wings

that help you take off and land.

And these are initially set up.

You'll have to get rid of them once you've taken off, so...

So you have them up to take off?

They are up initially to take off

so you want to...you want to decrease them all the way to zero

degrees...

Once you get off the ground.

Once you get off the ground, yeah.

Each plane has a particular range that their flaps can go,

and so you want to decrease them all the way,

so you hit shift-F.

Each capital F decreases flaps by 10 degrees

so you'll just keep hitting that...

So you've got to hit it a few times.Student

Instructor Yeah...and on the fighters it's like 30 degrees,

so you have to hit it three times to get rid of it.

Table 1.3: An example of a hypothetical situation existing through multiple instructions.

Requirement Met in this work?

1. Flexible initiation of instruction no (only impasse-driven agent-initiated)

2. Flexibility of instructional knowledge partial (full flexibility for action

content commands)

3. Situation flexibility partial (both implicitly and explicitly sit-
uated instructions, but no multiple utter-

ance hypotheticals)

Table 1.4: The requirements of the interaction problem.
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What are the proper applicability conditions for the instruction "Pick up a red block"? Simple

memorization would yield poor (low transfer) learning; something like whenever blocking open an

office door, pick up a red block. However, the fact that the block is red, and even that it is a block,
are irrelevant in this case. Rather, the fact that the block weighs (say) over five pounds, giving it

enough friction with the floor to hold open the door, is crucial. The proper learning is something
like:

If trying to block open a door, and
there is an object obj that is pick-uppable, and

obj weighs more than 5 pounds

then the best thing to do next is pick up obj.

Solving the transfer problem involves both generalization and specialization. Here, the original
instruction is both generalized (color red and isa block drop out) and specialized (weight > S

is added).

The transfer problem places a number of demands on a complete tutorable agent:

. General learning from specific cases. The agent is instructed to perform a task in a

particular situation, but is expected to learn generally to perform the task in sufficiently
similar situations.

2. Fast learning. An instructable agent is expected to learn new procedures quickly. Each task

should only have to be taught once.

. Maximal use of prior knowledge. An agent must apply its prior knowledge in learning

from instruction. This is a maxim for machine learning systems in general (if you have

knowledge, use it), and is particularly relevant for learning from instruction because learning

is expected to happen quickly.

, Incremental learning. The agent must be able to continually increase in knowledge through
instruction over the course of its lifetime. New knowledge must be smoothly integrated into

the existing knowledge base as a part of the agent's ongoing performance.

. Learning of all types of knowledge used in task performance. An agent uses multiple

types of knowledge in performing a task; control knowledge, knowledge about objects and

their properties, knowledge of the effects of actions, etc. The agent may be missing pieces of

knowledge of any of these types. Thus, a complete tutorable agent should be able to learn any

of these types of knowledge from instruction. The theory of learning from tutorial instruction

presented in Chapter 2 makes this a testable criterion, by laying out the types of knowledge

in an agent based on a particular computational model of intelligent agents.

. Dealing with incorrect knowledge. The agent's knowledge is clearly incomplete; other-

wise, it would not need instruction. However, its knowledge may also be incorrect. Incorrect

knowledge may be a part of the agent's original knowledge, or may be learned from incorrect

instruction. A complete tutorable agent must be able to perform and learn effectively in the

face of incorrect knowledge.

. Learning from instruction coexisting with learning from other sources. In addition

to instruction, a complete agent should be able to learn from other sources of knowledge that

are available [Huffman et al., 1993b], such as external observation, analogy to other domains,

etc. These other types of learning may interact with instructional learning. Instructions may

suggest their use (e.g., "Try this out and notice what happens").

The theory of learning from tutorial instruction presented here allows the requirements (1)

through (5) of this list to be met. The research has focused on adding to incomplete knowledge

through instruction, and does not explicitly deal with the issue of incorrect knowledge (requirement

6). The instructional learning method that has been developed should be readily combinable with
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Requirement Metin this work?

1. General learning from specific cases yes (via situated ezplanation)

2. Fast learning yes (new procedures only taught once)

3. Maximal use of prior knowledge yes

4. Incremental learning yes

5. Learning all types of knowledge used in yes (all knowledge types of the problem
task performance space computational model [Newell et al.,

1990])

6. Dealing with incorrect knowledge no (only extending incomplete knowledge)

7. Coexistence with learning from other no (not demonstrated)
sources

Table 1.5: The requirements of the transfer problem.

learning from other sources (requirement 7), but as the focus here is on instruction, this has not
been demonstrated.

The requirements of the transfer problem are summarized in Table 1.5. The most distinguishing

feature of Instructo-Soar is its ability to learn each of the types of knowledge it uses during task

performance from instruction (requirement 5). Thus, it can be termed complete with respect to

instructability of its knowledge types.

1.3 Related work

1.3.1 Artificial Intelligence

A number of systems have been produced that behave in response to natural language instruc-

tions, but do not do extensive learning. One of the earliest and most famous is SHRDLU [Winograd,

1972]. SHRDLU plans and acts in a blocks-world domain in response to natural language com-
mands. The focus is primarily on planning and on the mapping problem; SHRDLU transforms

natural language input into code fragments that are run to produce the instructed action. The

system does a small amount of rote learning, such as learning new goal specifications by directly

transforming sentences into state descriptions, but does not learn how to perform procedures.

More recent research has investigated the mapping problem for more powerful agents. Chap-

man's [1990] SONJA plays a video game and can take instructions during the course of the action;

the system uses the pragmatics of the ongoing task to understand incompletely specified instruc-

tions. The AminNL project [DiEugenio and White, 1992; DiEugenio and Webber, 1992; Kalita,

1991; Kalita and Badler, 1990] focuses on the mapping problem for an animated agent. Neither of

these systems do any learning.

One of the most impressive recent agents that behaves in response to natural language is Vere

and Bickmore's [1990] Homer. Homer lives in a simulated sea world, can do complex temporal

planning, and can understand a range of instructions, focusing on instructions concerning actions

to be taken in a timely manner. Homer does some simple learning; for instance, it can learn from

assertions ("You own the log"), and from conditional instructions indicating actions to be taken

later ("If you see a bird, photograph it"). It also has a detailed episodic memory, allowing the

instructor to refer to past events and instructions, and to ask for explanations of actions. However,
Homer does not learn procedures or other kinds of domain knowledge from sequences of instruction,

or make use of prior knowledge to produce general learning.

Learning from tutorial instruction is related to work on learning from external guidance and

advice taking [McCarthy, 1968; Rychener, 1983; Carbonell et al., 1983]. Some early systems learned

declarative, ontological knowledge from instructions [Lindsay, 1963; Haas and Hendrix, 1983]. UN-

DERSTAND [Simon, 1977; Simon and Hayes, 1976] was among the first to do procedural learning
from instruction. It took a natural language description of a task that was isomorphic to the Tower

of Hanoi problem, and built GPS-style operators and difference tables to solve the task.



15

Mostow's FOO [Mostow, 1983a; Mostow, 1981; Hayes-Roth el al., 1981] and BAR [Mostow,

1983b] were early attempts to build a system that could learn from advice. FOO and BAR take very

general advice, such as "Avoid taking points" for the card game Hearts (the actual input is not in

natural language). The advice is unsituated and non-interactive; it is not given during performance

of any specific task. It is operationalized by applying a sequence of hand-selected transformations.
Because the advice is unsituated and can potentially apply to many different situations, it is difficult

to learn from. "Avoid taking points" requires a large number of transformations, producingmuitiple

operationalized search heuristics for playing Hearts. Such advice would be of little use to a human
learner, because the unsituated operationalization problem is so difficult. Thus, the focus of the

work in this thesis is situated instruction.

Recently, some other researchers have begun to focus specifically on the issue of learning from

situated natural language instruction. Martin and Firby [1991] discuss an approach to interpreting

and learning from elliptical instructions ("Use the shovel") by matching the instruction to expecta-

tions generated from a task execution failure. Alterman and his colleagues [Alterman el al., 1991;

Alterman and Carpenter, 1991] have produced FLOBN, a system that learns to operate a device

by using instruction and analogy to a previously known device. FLOBN makes use of written

"recipe-like" instruction that specifies a sequence of steps to achieve a goal, rather than the type of
interactive instruction that this work is concerned with. It learns by relating instructed steps for a

procedure to previously known procedures with similar goals.

Most other work on learning from instruction-like input has been under the rubric of learn-

ing apprentice systems (LAS's). Learning apprentice systems have been defined as "interactive,

knowledge-based consultants that directly assimilate new knowledge by observing and analyzing the

problem-solving steps contributed by their users through their normal use of the system" [Mitchell el

al., 1990]. Tutorial instruction extends past work in LAS's in two directions: interaction flexibility

and types of knowledge learned. Past LAS's have interacted by either observing an expert's solution

to specific problems [Redmond, 1992; Mitchell et al., 1990; Wilkins, 1990; Segre, 1987; VanLehn,

1987] or by attempting to solve problems and allowing the expert to verify and critique decisions

as they are made by the performance system [Porter el al., 1990; Laird el al., 1990; Gruber, 1989;

Kodratoff and Tecuci, 1987b; Golding et al., 1987; Porter and Kibler, 1986]. LAS's that learn by

observing expert solutions do not provide flexible interaction with the instructor; the "instructions"

(the observed actions) are each primitive actions that occur in their canonical execution order to
achieve the desired goals. LAS's that allow the expert to critique decisions typically suggest steps

to the instructor to be verified or rejected for other actions. Tutorial instruction increases this

interaction ability in a number of ways. First, the instructor may specify unknown subtasks, or

subtasks with unachieved preconditions, to the agent at any point, even during teaching of larger

task. Past LAS's typically do not allow specification of completely unknown subtasks. Second,

tutorial instruction allows the use of explicitly situated instructions to teach about contingencies

that may not be present in the current situation.

LAS's have used both analytic and inductive learning methods to learn in a variety of domains.

However, specific LAS's have focussed on learning particular types of knowledge: e.g., operator

implementations (LEAP [Mitchell et al., 1990]), goal decomposition rules (DISCIPLE [Kodratoff

and Tecuci, 1987b]), operational versions of abstract (functional) goals (ARMS [Segre, 1987]),

control knowledge and control features (ASK [Gruber, 1989]), procedure schemas (a combination

of goal decomposition and control knowledge; learned by SIERRA [VanLehn, 1987]), and heuristic

classification knowledge (PROTOS [Porter et al., 1990], ODYSSEUS [Wilkins, 1990]). A complete

tutorable agent should be able to learn any of the types of knowledge it uses for task performance
via instruction. One contribution of this work is making this requirement explicit, and showing how

it can be evaluated by delineating the computational model underlying an instructable system's

performance. Instructo-Soar meets the requirement, demonstrating a wider breadth of learning

than previous learning apprentice systems.
Other interactive knowledge acquisition tools besides learning apprentices are more distantly

related to tutorial instruction. Early interactive tools, such as TIERESIAS [Davis, 1979], required

direct manipulation of symbol level structures used by the knowledge-based system, instead of allow-

ing interaction at the knowledge level. Thus, the user had to understand the internal workings of the
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system. More recent work has focused on method-specific elicitation techniques, based on McDer-
mott's idea of knowledge roles [McDermott, 1988] and Chandrasekaxan's generic tasks framework
[Chandrasekaran, 1986]. These knowledge-level techniques gain their power by limiting application
to a specific problem solving method, with a pre-defined set of knowledge roles [Birmingham and

Klinker, 1993]. Method-based knowledge acquisition tools differ from tutorial instruction in that
elicitation is unsituated and focused on a particular class of tasks. The tools are applicable to
tasks requiring global control strategies based on their built in problem solving method; thus, they
need not acquire abstract procedural ("process") knowledge. They acquire knowledge interactively,
but the interaction concerns filling of knowledge roles ("data"), rather than situated instruction

for specific tasks ("data" and "process" for specific tasks). Tutorial instruction is not limited to a
particular problem solving method, but is not easily applied to tasks requiring non-local control.

1.3.2 Cognitive Science

Few cognitive studies have examined the course of learning for individual subjects as they are
given situated, interactive procedural instruction. Most instructional studies have either examined
the effects of various linguistic forms of individual instructions (e.g., [Jones, 1966; File and Jew, 1973;
Just and Carpenter, 1976; Wright and Wilcox, 1979; Dixon, 1982]), or the learning effectiveness,
measured in terms of transfer, of different global instructional and training strategies (see [Singley

and Anderson, 1989] for a review). These studies have shown that one-to-one tutoring is a highly
effective teaching technique [Bloom, 1984; Palinscar, 1986]. It robustly produces stronger learning
than classroom instruction by two standard deviations [Bloom, 1984].

A number of studies have shown that students' amount of prior knowledge has a large impact

on learning from instruction. These results are relevant to the model of learning from tutorial
instruction presented here because the model makes heavy use of prior knowledge to leverage
learning. For instance, in Kieras and Bovair's [1984] study, subjects were given instructions to
operate a device. Subjects given prior knowledge of the device performed much better than those
without such knowledge, in terms of speed of performance, accuracy, and retention.

A related result involves the self-explanation effect [Chi and VanLehn, 1991; Chi et al., 1989].

Subjects who attempt to self-explain examples of problem solutions while studying them achieve
higher performance when solving problems later than subjects who do not. The theory of learning
from tutorial instruction presented here is based on a self-explanation process, as described in the
next chapter. Although receiving tutorial instruction is somewhat different from studying pre-
solved examples, the prediction is the same; namely, that self-explanation allows greater learning
and transfer.

Finally, this work can be compared with other cognitive models of procedural learning. Most
recent models are based on Anderson's model of procedural learning in ACT* [Anderson, 1983;

Anderson, 1987; Singley and Anderson, 1989], which in turn is based on Thorndike's [1903] theory
of identical elements. Thorndike proposed that all transfer occurred because of the use of identical

elements - specific stimulus-response rules - across multiple tasks. In Anderson's and other related

theories (including the one presented here), the identical elements are production rules.
Chapter 5 gives further discussion of relevant human behavioral data and related cognitive

models, after describing the behavioral properties and predictions of the theory presented here.

1.4 Outline of the rest of the thesis

This chapter has presented a definition and task analysis of the problem of learning from tutorial
instruction. It has described the three problems facing an instructable agent: the mapping problem,
the interaction problem, and the transfer problem. Any instructable agent must solve each of these

problems to some degree. As a metric for performance and comparison of instructable agents, the
requirements of each problem for a complete tutorable agent were developed. The focus of this work
is on the interaction and transfer problems.

The rest of the thesis is organized as follows. Chapter 2 presents the theory of learning from
tutorial instruction in abstract terms. The theory includes a computational model of an agent, the
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problem space computational model, and a learning technique, situated erplanatwn. The computa-

tional model defines the learning task by identifying the types of knowledge of an agent; each of

these types of knowledge should be learnable through instruction. The learning technique specifies

how an instructable agent can learn this knowledge from interactive instructions.

Chapters 3 and 4 describe an implemented instructable agent, Instructo-Soar, that embodies the

theory of Chapter 2. Instructo-Soar is able to learn each of the types of knowledge it uses in task
performance from instruction, and can handle both implicitly and explicitly situated instructions,

and the range of interaction flexibility described earlier. Chapter 3 describes Instructo-Soar's learn-

ing of completely new procedures, and extension of known procedures to new situations, through

implicitly situated instruction. Describing these capabilities will make the agent's basic learning

and task performance clear. Chapter 4 describes Instructo-Soar's learning of each of the remaining
types of knowledge, and its handling of explicitly situated instructions.

Instructo-Soar's possible application as a cognitive model is explored in Chapter 5. The theory

has been strongly influenced by its development within the Soar architecture and theory of cognition.

The chapter analyzes these influences, with an eye towards teasing apart the influence of various

aspects of Soar on the different behavioral properties of the instructional learning model. Based

on these behavioral properties, a set of behavioral predictions is generated, and the model and

its predictions and compared with known human behavioral data and other cognitive models of

procedural learning.

In Chapter 6, the results of the theory and implementation are analyzed. The current limitations

of the work and opportunities for future research are discussed in detail. Chapter 7 concludes with

a review of the major contributions of the thesis.

Appendix A describes Instructo-Soar's performance on a large instructional example that high-

lights each of the system's major capabilities. Appendix B gives a mathematical analysis of the

number of instruction sequences that can be used to teach a given procedure. This analysis in-

dicates the high degree of flexibility that an instructable agent like Instructo-Soar provides to its

instructor. Appendix C describes the details of how Soar's chunking mechanism produces general
rules from Instructo-Soar's situated explanation process.



Chapter 2

A Theory of Learning from Tutorial Instruction

This chapter presents a general theory of learning from tutorial instruction. The theory has

two parts. First, a computational model of an intelligent agent, known as the problem space com-

putational model (PSCM) [Newell et al., 1990; Yost, 1993] specifies the general form of the agent's

processing, indicating each of the types of knowledge that the agent has and how they affect its
performance. Specifying these types of knowledge defines the tutorial learning task and provides

an evaluation metric for an instructable agent: it should be able to learn each of its knowledge

types from instruction. Second, a learning technique, called situated explanation [Huffman and

Laird, 1994], specifies how an instructable agent can derive general knowledge from the instructions

it is given. The notion of explanation that is employed allows for both deductive and inductive

steps, and supports interactive instruction by allowing multiple, embedded levels of explanation

and instruction taking. The implemented instructable agent that embodies the theory is described

in Chapters 3 and 4.

2.1 The problem space computational model (PSCM)

A computational model is a "description of a class of systems in terms of a set of operations

on entities that can be interpreted in computational terms" [Newell et al., 1990, p. 6]. Specifying

the computational model of an agent defines the complete set of "operations on entities" that the

agent carries out during its performance. Each operation must be performed with knowledge; thus,

defining the basic operations of an agent's computational model defines the complete set of types

of knowledge that the agent uses in task performance.

A computational model for a general instructable agent must meet two requirements:

1. Support of general computation. For a general agent, any type of computation might be

required. The computational model must allow this flexibility.

. Close correspondence to knowledge level components. The components of the compu-

tational model - the "operations" and "entities" - must correspond closely to the knowledge

level [Newell, 1981]. This is required because the goal in identifying the computational model

is to elucidate classes of knowledge that instructions map to and that are learned. Since tuto-

rial instructions provide knowledge at the knowledge level (see Section 1.1), the further away

the components of the computational model are from the knowledge level, the more difficult

mapping and learning from instructions will be.

One class of computational models is standard programming languages (e.g., Lisp). These

languages clearly support general computation. However, their operations and constructs are at

the symbol level, without direct correspondence to the knowledge level. For example, dereferencing a

pointer does not directly correspond to any particular knowledge level action. Thus, using a symbol

level computational model would not provide much leverage in elucidating agent knowledge types.

Rather, an additional theory of mapping from instructions to the symbol level components of these

18
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computationalmodelswouldberequired.Thesameproblemexistsfor theoreticalcompulational
models,suchasTuringmachinesandpush-downautomata.

Similarly,¢onnectionistandneuralnetworkmodelsof computation(e.g.,[RumelhartandMc-
Cielland,1986])employ(bydesign)computational"operationsandentities"that areat a levelfar
belowtheknowledgelevel.Thus,thesemodelsarenotappropriateasthetop-levelcomputational
modelfor aninstructableagent.However,becausehigherlevelsof descriptionof acomputational
systemareimplementedbylowerlevels[Newell,1990],thesemodelsofcomputationmightbeused
astheimplementationsubstrateforthehigherlevelcomputationalmodelof aninstructableagent.

Logicisanotherpossiblealternative.Theentitieswithinlogics(e.g.,propositions,well-formed
formulas)arewellmatchedto theknowledgelevel.Logicsalsospecifythesetof legaloperations
onentities(e.g.,modusponens).Thecombinationoflogicalformulasandlogicaloperationsdefine
thespaceof what canpossibly be computed. However, logic provides no notion of what should

be computed; that is, although logics provide computational operations, they do not specify the
control of of those operations' application. Implemented logic systems (e.g., PROLOG) must add

extra control mechanisms that are outside of the logical formalism (e.g., the PROLOG "cut").

Control knowledge is a crucial type of knowledge in actual agents, that can be communicated by

instructions. Thus, it is desirable for the computational model of an instructable agent to include

control knowledge.
Another class of computational models with knowledge level components are the problem solving

methods that have been defined in the knowledge acquisition community; for example, heuristic

classification [Clancy, 1985], propose-and-refine constraint satisfaction [Marcus and McDermott,

1989], and the various generic tasks methods [Chandrasekaran, 1986]. These methods specify the

knowledge they require in terms of knowledge roles [McDermott, 1988] within a pre-defined control

structure. Because they are designed for particular families of tasks, these methods do not support

general computation in a flexible way, and thus are not an appropriate choice for the computational

model of a general instructable agent. However, these methods are appropriate as computational
models for instructable systems targeted at a particular type of problem; PROTOS [Porter et hi.,

1990], a learning apprentice for heuristic classification tasks, is an excellent example.

Since the goal of specifying an agent's computational model is to specify the agent's knowledge

types, it might appear that selecting a theory of knowledge representation, instead of a compu-

tational model, would be a viable alternative. Such theories define the functions and structures

that are to be used in representing knowledge of various kinds (e.g., KL-ONE [Brachman, 1980]);

in addition, some define the possible content of those structures (e.g., conceptual dependency the-

ory [Schank, 1975], CYC [Guha and Lenat, 1990]). However, since these theories do not specify

computational operations, they do not indicate how procedural knowledge is used within an agent.

Computational structure must be added to these theories to produce working agents.

Rather than an alternative to specifying a computational model, a theory of knowledge repre-

sentation is an addition, specifying how the knowledge contained in the computational entities and

operations of the computational model is represented. A complete content theory of knowledge

representation would provide a more fine-grained breakdown of the knowledge to be learned within

each category specified by the computational model. Defining the range of knowledge that can

be represented is especially important with respect to the mapping problem, since these possible

representations form the range of the mapping (see Section 1.2.1). As the mapping problem is not
the focus of this work, a content theory of knowledge representation is not included as a part of the

theory developed here.

The computational model adopted here is called the problem space computational model (PSCM)

[Yost, 1993; Newell et hi., 1990; Yost and Newell, 1989]. The PSCM allows us to describe an agent's

structure in a particular computational framework - computation within problem spaces - without

reference to the symbol level structures the agent uses to implement the computation. The "op-
erations and entities" within the PSCM are at a level above the symbol level, and approximating

the knowledge level [Newell et hi., 1990], thus meeting the requirement of close correspondence

to knowledge level components. Soar [Laird et hi., 1987] is one symbol level implementation of

the PSCM, and has been selected as the platform in which to implement the instructable agent
described here.
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Fisure 2.1: The processinlg of an agent within the problem space computational model. Triangles
represent problem spaces; squares, states; arrowS, operators; and ovals, impasses,
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A schematic of a PSCM agent is shown in Figure 2.1. Perception and motor modules connect t he

agent to the external environment. A PSCM agent reaches a goal by moving through a sequence
of slates in a problem space. A state consists of objects and attributes that reflect the current

point in processing. A PSCM agent makes progress towards its goals by sequentially applying

operators to the current state. Operators are essentially functions that produce a new state from

the current state, either by modifying the internal state representation or causing an action in the
external world. The PSCM agent reaches an impasse when its immediately available knowledge is

not sufficient either to select or fully apply an operator. When this occurs, another problem space

context (termed a subgoal) is created, with the goal of resolving the impasse. Operators are selected

and applied to states within this second context; another impasse may be reached, causing a third

context to arise, and so on.
In the PSCM, the only computational entities mediated by the agent's knowledge are states and

operators. 1 Thus, there are a small set of basic PSCM-level functions the agent must perform using

its knowledge:

1. State inference. The agent must construct a representation of the current state it is in. This

involves comprehending information delivered by perceptual modules, and making inferences

about state properties based on other state properties. For instance, an agent might have the

knowledge that a block is held if the gripper is directly above it and closed.

2. Operator selection. The agent must select an operator to apply to the current state. This

involves two types of knowledge:

2.1. Proposal knowledge. Proposals indicate operators that are deemed appropriate for the

current situation; e.g., that close-hand is appropriate when the hand is above a block

the agent is trying to grasp.

2.2. Preferential knowledge. Preferential knowledge compares and orders proposed operators;

e.g., "A is better than B"; "A and B are equally good"; "C is best"; "D is rejected."

3. Operator application. Once selected, an operator is applied to make changes to the cur-

rent state, and perhaps produce motor commands. An operator may be applied directly, or

indirectly via a subgoal. Thus, operator application knowledge can take two different forms:

3.1. Operator effects. The operator is applied directly in the current problem space. The

agent has knowledge of the effects of the operator on the state and motor commands

produced (if any).

3.2. Sub-operator selection. The operator is applied by reaching an impasse and selecting

a sequence of operators in a subgoal. Knowledge of the operator's application in this

case equals knowledge of the selection of the sub-operators. Thus, this is equivalent to

operator selection knowledge (2, above).

4. Operator termination. An operator must be terminated when its actions have been com-

pleted. The termination conditions, or goal concept [Mitchell et aL, 1986], of an operator
indicate the state conditions that the operator is meant to achieve. For example, the termi-

nation conditions of pick-up(blk) might be that blk is held and the arm is raised.

Each of these functions is performed with knowledge. Thus, they define the set of knowledge types

present within a PSCM agent. The knowledge types are summarized in Table 2.1. 2
Because of the recursive nature of the PSCM, what can be thought of as the "goals" to be

achieved in a particular subgoal are typically PSCM operators in higher subgoals that must be

1 This version of the PSCM is slightly different than that presented in [Yost and Newel], 1989] and [Newel] et al.,

1990]. The main difference is that those PSCM descriptions included "task formulation" (selecting and specifying a

task to perform) as a basic operation, whereas here it is assumed that task formulation can be done by operators.

These knowledge types are more general than the typical knowledge roles for particular problem solving methods

[Balkany et al., 1991], such as heuristic classification or propose-and-revise. They might be thought of as the

knowledge roles for the PSCM, but the PSCM is more general than such problem solving methods.
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Entity Knowledge type Example

state inference If the gripper is closed and directly above a block, then the

gripper is holding the block.

operator proposal If the goal is to pick up blockl, and blockl is on tablel, and the

robot is not docked at tablel, then propose moving to tablel.

operator preferential (1) If picking up an object is proposed, and the object is explo-

sive, then reject picking it up.

(2) if the goal is to pick up a small metal object on tablel, prefer

moving to tablel over picking up the magnet.

operator effects An effect of the operator move to tablel is that the robot be-
comes docked at tablel.

operator termination The termination conditions of the operator "pick up blockl" are:

the gripper is holding blockl and the gripper is raised.

Table 2.1: The five types of knowledge of a PSCM agent.

completed. For example, if an agent selects an operator to pick up a block, and it cannot be

directly applied, a subgoal will be created; the "goal" of this subgoal is to complete the pick up

operator.

The PSCM is a broad formulation that supports general computation. Newell [1980, 1990] has

gone so far as to propose problem spaces as the basis for general intelligent behavior (the problem

space hypothesis). The PSCM supports a full range of behavior from search based knowledge lean

behavior (any weak method can be built in PSCM [Laird, 1983]) to knowledge rich behavior that
does not require search. A least commitment, local type of control is supported, because operators

are selected sequentially based on local information. This type of control is well matched to the

kinds of tasks most readily taught by tutorial instruction, as discussed in Chapter 1. However, local

control decisions in the PSCM can be combined to exhibit global control behavior, as demonstrated

by Yost's work on TAQL [Yost, 1993; Yost and Newell, 1989], a PSCM-based knowledge acquisition

language that acquired tasks requiring global control.

Finally, the PSCM supports incremental, monotonic extensions of an agent's knowledge. Be-

cause the PSCM applies each piece of knowledge locally and independently, new pieces of knowledge

of any type can be added without requiring reformulation of prior knowledge. This is an important

property for an instructable agent, which must incrementally learn new knowledge from instruction

over the course of its lifetime. If new knowledge conflicts with existing knowledge, the conflict will

not be fatal but will result in an impasse during later performance, allowing the agent to do further

reasoning (and possibly receive further instruction) to resolve the conflict.

Specifying the computational model has clarified the task faced by an instructable agent. The

agent must be able to learn each of the five types of knowledge specified by the PSCM from

instruction. The next section discusses the learning process itself.

2.2 Learning by situated explanation

Learning from tutorial instruction requires both analytic learning (based on prior knowledge),

and inductive learning (when prior knowledge is insufficient). The goal of this work is not to produce
a more powerful analytic technique or a better inductive method. Rather, the goal of the theory

is to specify how these techniques come together to apply to the comprehensive learning task of
tutorial instruction.

2.2.1 Overview

As described in Chapter 1, a theory of learning from tutorial instruction must meet a number

of requirements. The goal of this theory is learning that meets the requirements of the transfer

problem (Section 1.2.3) associated with extending incomplete knowledge through instruction, while
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Requirement From
1. Generallearningfromspecificcases Transfer
2. Fastlearning(each task instructed only once) Transfer

3. Maximal use of prior knowledge Transfer

4. Incremental learning Transfer

5. Ability to learn all types of knowledge used in task performance Transfer

6. Agent-initiated instruction Interaction

7. Flexibility of knowledge content: full flexibility for action commands; Interaction

others as appropriate

8. Situation flexibility: both implicitly and explicitly situated instructions Interaction

Table 2.2: The transfer and interaction requirements of tutorial instruction to be met by the learn-

ing theory.

reasoning step R
(instruction)

other steps

LEJ

Figure 2.2: Caricature of an explanation of how reasoning step R applies to the situation with the

initial state ,5' and the goal G to be achieved.

supporting flexible interaction that meets the targeted requirements of the interaction problem

(Section 1.2.2). Providing flexible interaction affects the learning theory because learning must
occur in the context of the ong6ing interaction between the agent and the instructor. Table 2.2

summarizes the requirements to be met by the theory.

While some of these requirements are useful primarily as evaluation criteria, others place a clear

constraint on the type of learning approach that might be used. In particular, requirements one

through three specify that general learning must occur from single, specific examples, by making

maximal use of prior knowledge. These requirements bode strongly for a learning approach based

on explanation. The use of explanation to produce general learning has been a common theme in

machine learning (e.g., [Fikes el al., 1972; DeJong and Mooney, 1986; Rosenbloom et al., 1988;
Schank and Leake, 1989; Minton et ai., 1989]; many others) and cognitive science (e.g., [Anderson,

1983; Rosenbloom and Newell, 1986; Lewis, 1988; Chiet al., 1989]). Forming explanations enables

general learning from specific cases (requirement 1) because the explanation indicates which features
of the case are important; features that do not appear in the explanation may be generalized over.

Learning by explaining is fast, typically requiring only a single example (requirement 2), in contrast
to correlational induction techniques, which require many examples. Prior knowledge is employed

to construct the explanation (requirement 3); the prior knowledge provides the strong bias that

allows learning from one example.
To form an explanation of some reasoning step, the way in which the step leads from the

current state of reasoning to achievement of a current goal must be determined. An explanation is

a path of reasoning from the current state to the goal, through the reasoning step being explained,

as diagrammed in Figure 2.2. The figure indicates the three key elements of an explanation:

the reasoning step being explained, the endpoints of the explanation (initial state and goal to be

reached), and the other reasoning steps required to complete the explanation.

What form do these elements of an explanation take for tutorial instruction?

• Reasoning step to be explained. In tutorial instruction, a reasoning step to be explained is an

individual instruction given to the agent.

Alternatively, an entire instruction episode - e.g., the full sequence of instructions for a new

procedure - could be explained at once. Applying explanation to single steps results in knowl-
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edgeapplicableat eachstep (e.g.,[Laird et al., 1989; Golding et al., 1987]); explaining full

sequences of reasoning steps results in learning schemas that encode the whole reasoning

episode (e.g., [Mooney, 1990; Schank and Leake, 1989; VanLehn, 1987]). Learning factored

pieces of knowledge rather than monolithic schemas or plan structures allows the knowledge to

be applied in a more reactive fashion, since knowledge is accessed locally based on the current

situation [Laird and Rosenbloom, 1990; Drummond, 1989]. This meshes with the PSCM's

local control structure. Explaining individual instructions is also supported by psychological

results on the self-explanation effect, which have shown that subjects who self-explain instruc-

tional examples do so by re-deriving individual lines of the example. "Students virtually never

reflect on the overall solution and try to recognize a plan that spans all the lines" [VanLehn

and Jones, 1991, p. 111].

• Endpoints of explanation. The endpoints of the explanation - the initial state of reasoning

and the goal to be achieved - together comprise the situation that the instruction applies to.

Requirement 8 from Table 2.2 specifies that this situation may be either the current state of

the world and goal being pursued, or some hypothetical situation that is specified explicitly

by the language of the instruction.

Most work in machine learning has involved explanations based on the current situation of

the performance system, in which the goal and state are known. An exception is learning

apprentice systems that learn by observing expert behavior, where the goals that observed

actions are meant to achieve may not be stated. Determining goals by observing actions

is a process of plan recognition [Redmond, 1992; Kautz and Allen, 1986]. In the type of

instruction considered here, however, plan recognition is not necessary, because the goal that

an instruction is intended to achieve is always either the current goal or a stated, hypothetical

goal.

• Other required reasoning steps. To complete an explanation of an instruction, an agent must

bring its prior knowledge to bear to complete the path through the instruction to achievement

of the goal the instruction applies to.

Early work in explanation-based learning (EBL) [Mitchell et al., 1986; DeJong and Mooney,

1986] required deductive explanations or "proofs" built from a complete and correct domain

theory. Tutorial instruction requires a broader notion of explanation, since the point of

receiving instruction at all is that the agent's knowledge is incomplete in various ways. An
explanation may include "deductive" steps (steps based directly on prior knowledge) and/or

inductive steps (steps that go beyond prior knowledge). In addition, further instruction may
be required to complete missing parts of an explanation, as described below.

A number of researchers have discussed learning from explanations involving inductive steps.

These inductive steps may be based on naive theories of explanation or causality (e.g., TDL in

OCCAM [Pazzani, 1991a], SWALE's explanation patterns [Schank and Leake, 1989]); or they

may be based on unexplained features of the example(s) being explained (e.g., [VanLehn et al.,

1990; Rosenbloom and Aasman, 1990; VanLehn, 1987; Hall, 1986]). Taking inductive steps within

explanations allows explanation-based approaches to do knowledge level learning [Dietterich, 1986],

rather than simply compiling knowledge that is already present within the performance system.

Knowledge level learning is clearly a requirement of learning from tutorial instruction, since the

agent is expected to learn completely new tasks, unknown effects of operators, etc. (aspects of the

requirement of learning of all types of knowledge), that cannot be learned by knowledge compilation
alone.

Thus, the theory of learning from tutorial instruction is based on producing explanations of

individual instructions as they apply to particular situations. The explanation process is situated

in that the situation the instruction applies to provides the endpoints for explanation. Given an

instruction, an agent:

1. Determines the situation the instruction applies to. This may be the current situation,

or a hypothetical situation that must be constructed from the instruction by the agent.
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. Attempts to explain how the instruction leads to goal achievement from the sit-

uation state. If the agent can explain how performing the instruction in the situation leads

to goal achievement (or to goal failure, for negative instructions), it can do general learning
about the instruction. This is because the explanation indicates which features of the sit-

uation and instruction are crucial for success; those crucial features specify what situations

the instruction should be applied to in the future. If an explanation cannot be formed, it

indicates that the agent is missing some key piece(s) of knowledge - one of the "other steps"

in Figure 2.2 is not known. At this point the agent may try to learn the missing knowledge

needed to complete the explanation, or may abandon the explanation.

The following subsections elaborate on each of these.

2.2.2 Determining the situation an instruction applies to

A situation consists of an initial state and a goal to be achieved. In addition to a state and goal,

situations also include a goal expectation; either success (successful goal completion), immediate

success (goal completion is expected immediately after the current instruction is carried out), failure

(goal completion blocked), or immediate failure (goal completion is expected to be blocked by
carrying out the current instruction). If no situational features are specified in an instruction, it is

implicitly situated, and applies to the agent's current situation. Alternatively, the language of the

instruction can explicitly specify features of either the state or the goal the instruction is intended

to apply to, making for two kinds of explicitly situated instructions. For example, "If the light is

on, push the button" indicates a hypothetical state, that includes a light that is on. "To turn on

the machine, flip the switch," indicates a hypothetical goal of turning on the machine.

Simple action commands ("Do X") are assumed to lead to success at achieving the goal; prohib-

ited actions ("Never do X") indicate an expectation of failure to achieve the goal if X is performed;

purpose clauses ("To do X, do Y") are assumed to indicate immediate success at achieving Y if X

is performed.

As described in Chapter 4, the implemented agent presented here constructs hypothetical sit-

uations based on comprehending single instructions that specify either hypothetical states or hy-

pothetical goals. Hypothetical situations that exist across multiple instructions are not supported.

After the situation of application of an instruction has been determined, the agent attempts to

explain how the instruction leads to the expected outcome in that situation.

2.2.3 Explaining an instruction

Explaining an instruction using only prior knowledge is preferable to making inductive leaps

within the explanation. This is because presuming the prior knowledge is of high quality (correct and

sufficiently general), the explanation and thus the learning will be of high quality also. Therefore,

an instructable agent first tries to explain an instruction using prior knowledge.

The prior knowledge available to the agent is PSCM knowledge about operators and states.

When executing (as opposed to explaining) actions, this knowledge applies to the current situation

to select and apply operators and make inferences at appropriate points. The most natural way to

use this knowledge when explaining an instruction is to apply it in the same way, but internally,

to the situation associated with the instruction being explained. Thus, explanation takes the form

of forward internal projection: the agent "imagines" itself in the instruction situation, and then

runs forward, applying the step specified in the instruction, and the other knowledge that it has

about states and operators, within the imagined situation. If the expected goal outcome is reached

within this projection, then the projected path from the situation state through the instructed step

to the goal comprises an explanation of the instruction. Forward projection is a common technique

in planning (e.g., [Fikes and Nilsson, 1971; Hanks, 1990]; many others). In contrast to planning,
however, the aim here is not to search by projecting possible paths, but to project the effects of a

specified step.
Consider an instruction specifying an operator OP to be applied in a state S, to achieve a

goal G. The PSCM processing to internally project OP is diagrammed in Figure 2.3. Processing
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Figure 2.3: The structure of processing of the PSCM to explain (forward project) an instructed

operator within a situation.

begins at the top left, in state S, by selecting operator G; arrows moving down to lower levels

represent impasses that lead to processing in subgoals. The agent has placed itself (internally)

into the situation of application of the instruction, with S as the state and G as a higher-level

operator to be completed (recall that goals correspond to operators in the PSCM). Since G cannot

be completed directly, a subgoal arises. Within this context, the agent attempts to complete G by

simulating, to the best of its knowledge, performance of the instructed operator OP (which may

involve simulating sub-operators subl, sub2, etc.). In essence, the agent has asked itself, "What

will happen when l do what I was instructed to do?" After projecting OP, other knowledge applies
within the projection as available, selecting and applying (simulating the effects of) operators

(gsubl, gsub2,...), making inferences, etc. This is not a search, but direct application of prior

knowledge to the given situation. The explanation of OP is successful if the subgoal for achieving

G (that is, reaching the expected outcome) can be completed within the projection.

What knowledge must a PSCM-based agent possess to explain an instruction via internal pro-

jection? Consider again the explanation of an instruction commanding an operator OP to be

performed (Figure 2.3); instructions communicating other types of knowledge have similar expla-

nation knowledge requirements. The explanation of an instruction involves knowledge about the

operator specified by the instruction, OP, the goal of the situation, G (an operator in PSCM terms),

and the states the projection passes through.

Figure 2.4 elaborates the explanation by indicating the points where various types of knowledge
about each of these components may apply during the projection process. The figure indicates that

seven different categories of knowledge may be needed during an internal projection to explain an

instruction:

(a). State inference knowledge may apply to any state in the internal projection.

(b). Mapping knowledge allows OP to be produced and selected from the instruction.

(c). Knowledge of the effects of OP (either directly or through a series of sub-operators applied

in a subgoal) allows the state to be altered to reflect the (projected) execution of OP.

(d). If OP is not a primitive operator, then projecting OP requires the application of a series of

sub-operators (subl, sub2, ...) required to carry out OP. This involves operator proposal,

operator preferential, and operator effects knowledge for the various sub-operators.

(e). Knowledge of OP's termination conditions, or goal concept, allows the agent to terminate

OP at the appropriate point in the internal projection.
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Figure 2.4: The types of knowledge that may be used in explaining an instruction.

(f). Once OP has been projected, to complete the explanation the agent must know the rest of
the implementation for G; that is, the selection and effects of a series of operators gsubl,

gsub2,..., following OP that allows G to be completed. As in (d), this involves operator
proposal, operator preferential, and operator effects knowledge for each sub-operator leading

to completion of G.

(g). Finally, the agent must know the termination conditions of G, to recognize that the goal has

been completed within the internal projection.

If all of the required knowledge in these categories (which include all of the five types of PSCM

knowledge) is known to the agent, then the internal projection process will result in a successful
explanation of OP in the given situation. This explanation indicates the crucial features of OP, S,

and G required for success, allowing the agent to learn general knowledge about the use of OP in

states like S to reach goals like G.

2.2.4 Dealing with incomplete explanations

The agent will be unable to complete an explanation if a needed piece of knowledge from any of

these categories is unknown to the agent. An incomplete explanation is indicated by an unresolvable

impasse during internal projection that precludes the completion of G. The possibilities of missing

knowledge are summarized in Figure 2.5. For instance, the agent may not know a key effect of an

operator, or a crucial state inference, making it unable to reach G's termination conditions within

its internal projection. Alternatively, a commanded operator OP may be completely unknown and

thus inexplainable.

More formally, consider an instructed operation I that the agent must explain. A completed

explanation would allow a piece of knowledge IK to be learned. If the agent cannot explain I

successfully, it is because another needed piece of knowledge MK (within one of the seven categories

in Figure 2.5) is unknown. For example, I might be a command to perform some operator OP; IK,

a proposal for OP; and MK, knowledge of one of the effects of OP. Figure 2.6 shows an example of

this kind (to be described in Chapter 4 below) for the instruction "To turn on the light, push the
button." From this instruction, the agent should learn to propose pushing the button when it has

the goal of turning on the light (IK). It attempts to explain the instruction by simulating pushing

the button (selecting the push-button operator in Figure 2.6) when the light is off. As the figure

indicates, this simulation cannot be completed successfully if the agent is missing the knowledge of
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I: "To turn on the light, push the button."

Hypothetical situation:

state: off(light)
goal: on(light)
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Figure 2.6: An example of missing knowledge needed to complete an explanation and allow learn-

ing from an instruction. 1 is the instruction; IK is the knowledge learned from the

instruction; and MK is the missing knowledge needed to complete the explanation of I.

how pushing the button affects the light (MK). In general, of course, multiple pieces of knowledge

needed for the explanation could be unknown (there could be multiple MK'S).

Determining what knowledge MK is missing to cause an incomplete explanation is extremely

difficult in general. It is very hard credit assignment problem for an agent to determine what

knowledge it does not have, that if present would have led to a successful explanation. Thus, there

is no algorithmic way to determine MK. Rather, when the explanation of I cannot be completed,

the agent has the following possible courses of action:

1, Give up on explaining I now.

1.1. Delay explanation until later. In some cases, it is likely that the missing knowledge

ME needed to complete the explanation will be acquired later. In such cases, the agent

may delay completing the explanation of I until the missing knowledge is learned. Ini-

tially, the agent can simply memorize what it was told to do (rote learning). Later, after

the missing knowledge MK has been acquired, the previously memorized instruction, I,

can be recalled and successfully re-explained to learn IK.

1.2. Learn IK directly. In some cases, the agent's knowledge is incomplete in ways that

cannot be easily induced or learned later. In these cases, the agent can attempt to learn

the knowledge to be gleaned from the instruction (IK) directly, without an explanation

to base the learning on. This might involve heuristics to induce IK. In addition, the

instructor might be asked to verify or alter IK. For instance, if the agent cannot explain

an instruction to perform OP, it might heuristically induce a set of conditions under

which OP should be selected, say {A, B, C}, and ask the instructor to edit this set as

needed to produce IK, a proposal for OP. This is the process followed by systems such

as ASK [Gruber, 1989] and Robo-Soar [Laird et al., 1989].

2. Complete the explanation of I by learning MK.

2.1. Induce MK to complete the explanation. In some cases, the agent can make a good

guess at what knowledge, MK, is missing. In such cases heuristics can be used to induce

the missing knowledge. Learning MK allows the explanation of I to be completed, and

Ig to be learned.
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1.Giveupon explaining I now.

1.1. Delay explanation until later.

1.2. Learn IK directly (not from explanation).

2. Complete the explanation of I by learning MK.

2.1. Induce MK to complete the explanation.

2.2. Take instruction to learn MK.

Table 2.3: Options when the explanation of an instruction I cannot be completed because a piece

of knowledge, MK, is unknown.

1.1. if MK is likely to be learned from later ----- delay explanation until later

instruction in the ongoing dialogue

1.2. if MK is not likely to be learned later, _ learn IK directly (without completing

and no good guess about MK can be the explanation of I)
made

2.1. if a good heuristic guess at MK can ----. induce MK to complete the
be made explanation

2.2. if MK is not likely to be learned later, ----. take instruction to learn MK

and a heuristic guess at the type of

MK can be made

Table 2.4: Conditions for following each option when the explanation of an instruction I cannot be

completed.

2.2. Take instruction to learn the missing knowledge MK. Finally, the instructor can

be asked to explain I by teaching the agent MK. This further instruction can allow MK

to be learned, the explanation of I to be completed, and IK to be learned. Similarly,

inductive guesses at MK to complete the explanation (2.1, above) can be presented to
the instructor for verification and alteration as needed.

This final option opens up the possibility of multiple levels of instruction. The agent can

initiate instruction not only to perform tasks, but also to complete explanations. Rather than

heuristically inducing IK when the explanation of I cannot be completed (option 1.2), taking more

instruction allows IK to be learned based on an explanation that includes MK. Provided MK is a

high quality piece of knowledge, IK will be of high quality as well. Thus, by composing knowledge

together, multiple levels of instruction can lead to learning higher quality knowledge than a single

level; learning at lower levels (MK) supports learning at higher levels (IK). In addition, MK is
now available for use in future explanations. The examples given in Chapter 4 demonstrate this

possibility.

For reference, the options for dealing with an incomplete explanation are listed in Table 2.3. The

option to be followed depends on the properties of the missing knowledge MK that is involved. The

key properties, as mentioned earlier, are whether MK is likely to be learned later in the ongoing

dialogue with the instructor, and whether a good heuristic guess about MK can be made. The

conditions for following each option are summarized in Table 2.4. These conditions are heuristics

that are indicated by the type of situation and the point in processing where the explanation

process breaks down. The options that Instructo-Soar follows under different circumstances will be

described more specifically in the following chapters.

The theory does not include an explicit check for consistency when newly learned knowledge is

added to the agent's knowledge base. However, as Kodratoff and Tecuci [1987] point out, learning

apprentices are biased towards consistency to the extent that they only acquire new knowledge when

current knowledge is insufficient, and that they use current knowledge when deriving new knowl-

edge. In situated explanation, since the explanation process involves applying (projecting) the new

knowledge in the appropriate situation, the agent maintains a kind of "performance consistency,"
rather than standard notions of semantic consistency. However, in some domains more explicit
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measuresof consistency(suchasthat usedbyODYSSEUS[Wilkins,1990])mayberequired.
Evenwithoutexplicitconsistencychecks,situatedexplanationmeetstherequirementthatlearn-

ingbeincrementalovertheagent'slifetime,becauseit occursasa partof theongoingprocessing
oftheagent,andaddsnewpiecesofknowledgeto theagent'slongtermmemoryinamodularway.
Theleastcommitment,localcontrolstructureof thePSCMenablesthisproperty;newknowledge
canbeaddedto memoryindependentofcurrentknowledge.If thereisaconflictbetweenpiecesof
knowledge,forexampleproposingtwodifferentoperatorsto beperformedinsomesituation,anim-
passewill arisethat canbereasonedaboutor resolved with further instruction (again, maintaining

performance consistency). An example of this is described in Chapter 4.

2.3 Comparison to alternative approaches

Situated explanation can be compared with theories of instructional learning that could be

developed based on alternative learning approaches. Two major learning approaches will be con-
sidered: correlational learning (i.e., induction based on correlations of features) and case-based

reasoning. When these approaches are constrained to meet the learning requirements of tutorial

instruction, the resulting theories, although they differ in some ways, have many similarities to sit-

uated explanation. In particular, requirements 2 and 3 from Table 2.2, that learning occur quickly

by making use of prior knowledge, and requirement 8, the use of both implicitly and explicitly

situated instructions, strongly constrain the theories that could be developed.

2.3.1 Correlational learning

Correlational learning involves inducing concepts by correlating feature values that appear across

multiple examples. Given enough examples, the correlations indicate which features are important

to the concept being learned. Correlational techniques include symbolic concept learning and

clustering methods (e.g., [Fisher, 1987; Quinlan, 1986; Michalski and Stepp, 1983; Mitchell, 1982]),

connectionist methods (e.g., [Rumelhart and McClelland, 1986]), and other reinforcement learning

techniques (e.g., [Sutton, 1988; Holland, 1986]).

Since instructions may be explicitly situated, determining the situation for an instruction would

have to be included as a precursor to correlational learning, so that the features of the situation

could serve as inputs to the learning algorithm.

In their pure form, correlational methods do not make use of prior knowledge; all knowledge is

drawn from the examples themselves, with the aid of domain-independent biases. Because of this,

the methods require a large number of examples for learning. An instructable agent, however, has

prior knowledge that it is expected to use to produce fast, general learning. Thus, to be used in

learning from instruction, correlational methods must be augmented with the ability to use prior

knowledge to produce fast learning. A number of researchers have discussed ways to do this (e.g.,

[Thrun and Mitchell, 1993; Gordon and Subramanian, 1993; Pazzani, 1991b; Towell et al., 1990;
Flann and Dietterich, 1989]). This is the inverse to allowing inductive steps within explanation-

based methods; both attempt to allow maximal use of prior knowledge without requiring that the

prior knowledge is complete. If the prior knowledge that is available includes control and causal

knowledge (operator selection and operator effects) - as it will for an instructable agent - then

composing that knowledge to bias learning will (by definition) involve an explanation process.

Thus, once the requirements of instructability are applied, using correlational methods for learn-

ing from instruction appears to have many similarities to situated explanation. One difference that

remains may be that while situated explanation always attempts to learn from a single example

(making inductions and asking for verifications and explanations to do so), a theory with correla-
tional learning as its basis could make use of multiple examples. However, induction over multiple

examples could also be employed within an explanation-based approach (e.g., [Miller, 1993]).
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2.3.2 Case-based learning

A second alternative would be to employ case-based reasoning methods (e.g., [Redmond, 1992:

Alterman et al., 1991; Schank and Leake, 1989]) to learn from instruction. A case might consist of

the sequence of instructions for a procedure. When asked to perform the procedure again in some

other situation, the previous case would be recalled and altered to apply to the current situation

This alteration process would result in learning of a more general form of the case.

Case-based learning has many similarities to explanation-based learning; the two can be thought

of as points on a continuum. Two key dimensions of the continuum include:

• Grain size of cases. Case-based methods typically work with the full reasoning sequence

used to reach a goal (e.g., a full sequence of instructions), while explanation-based methods

often work with single steps in the reasoning (e.g., single instructions). As described earlier,

in interactive instruction learning about individual steps appears to be more appropriate.

However, the explanation process allows knowledge learned about each step in a sequence to

affect learning of the remaining steps; the end result can be viewed as a distributed case or

schema that encodes the overall procedure (as, e.g., [Alterman and Zito-Wolf, 1993]).

• Generalization at storage versus retrieval time. Case-based methods typically general-

ize cases primarily at retrieval time. That is, when a case is given, it is stored in a rote form.

Later, the case is retrieved for use in some similar situation; based on altering the case for this
situation, the case and its index are generalized. Explanation-based methods typically explain

and generalize an example when it is given, and store the general knowledge derived from it.

The theory presented here can be viewed as a blend of these approaches. The instructable

agent attempts to explain an instruction when it is given. However, if the explanation cannot

be completed, because of missing knowledge that will be learned later (option 1.1 from Ta-

ble 2.4), the agent memorizes the instruction in a rote form, to be retrieved for explanation

at a later time. This process is described in more detail in the next chapter.

As in correlational learning, a case-based instructable agent would still have to deal with ex-

plicitly situated instructions; here, the explicitly indicated features of the situation might be used
as indices for retrieval of the case. Similarly, altering a case for use in a different situation would

involve the use of prior knowledge, applied in an explanation type process. Thus, to meet the

requirements of instructability, a case-based theory ends up with many similarities to situated ex-

planation. As evidence of this, Alterman et al. [1991] describe a case-based approach to learning

from written procedural instruction. Their system, FLOBN, uses instruction in altering an old pro-

cedure (using a pay phone) to produce a new, related procedure (using the Airphone). Although

focused on altering a past cases, the process involves an explanation-based method for determining

each instruction's role in the new procedure.

In summary, both correlational and case-based approaches, when constrained by the require-

ments of instructability, end up with many similarities to situated explanation. Whether the dif-

ferences that remain would result in significant differences in performance of an tutorable agent is

an empirical question.

2.4 Conclusion

This chapter has presented a theory of learning from tutorial instruction that meets many of the

requirements for a complete tutorable agent described in Chapter 1. The first half of the chapter

specified a computational model of an intelligent agent, the problem space computational model,

and elucidated the types of knowledge within this computational model. The second half of the

chapter described a learning technique, situated explanation, that allows an instructable agent to

learn general knowledge from instruction.
In the next two chapters, the theory will be demonstrated by describing an implemented in-

structable agent, Instructo-Soar, that embodies the theory. Chapter 3 describes Instructo-Soar's

learning of new procedures, and the extension of known procedures to new situations. Learning
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proceduresinvolveslearningoperatorproposalandterminationconditionknowledge,fromimplic-
itly situatedinstructions.Chapter4describeslearningof eachof theremainingtypesof PSC,M
knowledge,andthehandlingof explicitlysituatedinstructions.



Chapter 3

Instructo-Soar: Learning and Extending
Procedures

This chapter and the following one present Instructo-Soar [Huffman and Laird, 1993b], an

implemented instructable agent that embodies the theory of learning from tutorial instruction

described in Chapter 2. Instructo-Soar is implemented in the Soar architecture [Laird et al., 1987],

and has been applied to a simulated robotic domain that includes a robot, tables, blocks, and

various other objects to be controlled or manipulated. The Instructo-Soar agent engages in an

interactive dialogue with its instructor, in which it receives instructions in the form of natural

language sentences. From these instructions, it learns to perform tasks and extends its knowledge
of the domain.

Instructo-Soar meets each of the transfer and interaction requirements for learning from tutorial

instruction targeted in the previous chapters, as listed in Table 3.1. In particular, it is able to learn

each of the types of knowledge it uses for task performance (the knowledge types of the PSCM) from

instruction; it can learn from both implicitly and explicitly situated instructions; and it supports

flexible interaction, allowing the instructor to request that a task be performed at any point, whether

the agent knows about the task or how to perform it in the current situation. These capabilities,
listed in Table 3.2, enable Instructo-Soar to exhibit a wider breadth of learning and interaction

than previous learning apprentice systems.

Instructo-Soar is implemented in Soar productions. It begins with over 2,500 productions, or

about 22,000 lines of code, and has learned up to 5,000 more productions. The simulated domain

Instructo-Soar is applied to and its interface to Soar consist of about 10,000 lines of C code.

After a brief description of Soar and a statement of Instructo-Soar's domain and initial knowl-

edge, this chapter discusses the learning of procedures from tutorial instructions that are implicitly

situated (i.e., imperative commands). In particular, the chapter describes learning of completely

new procedures, that the agent has no prior knowledge of, and learning to extend known procedures

to apply in new, unfamiliar situations. In PSCM terms, a procedure corresponds to a complex op-

erator, that must be selected, implemented, and terminated. Thus, learning a procedure involves

learning selection knowledge for an operator, operator proposals for the series of sub-operators used

to implement the operator, and the termination conditions for the operator. Chapter 4 completes

the description of Instructo-Soar by describing its learnir_g of the remaining types of PSCM knowl-

edge, and its use of explicitly situated instructions. Appendix A details that agent's processing on

an extended example that demonstrates its full range of learning and interaction capabilities.

3.1 Soar

Instructo-Soar is built within Soar, an architecture for problem solving and learning that follows

the PSCM. Soar has been applied to a large number of problems in both AI and cognitive science

(see [Rosenbloom et al., 1993] for many examples), and has been proposed as the basis for a unified

theory of cognition [Newell, 1990].

34
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Requirement From

1. General learning from specific cases Transfer

2. Fast learning (each task instructed only once) Transfer

3. Maximal use of prior knowledge Transfer

4. Incremental learning Transfer

5. Ability to learn all types of knowledge used in task performance Transfer

6. Agent-initiated instruction Interaction

7. Flexibility of knowledge content: full flexibility for action commands; Interaction

others as appropriate

8. Situation flexibility: both implicitly and explicitly situated instructions Interaction

Table 3.1: The transfer and interaction requirements of tutorial instruction to be met by the learn-

ing theory.

Category Type Described in

Knowledge operator proposal Chapter 3

types operator termination Chapter 3

learned operator preferential Chapter 4

operator effects Chapter 4

state inference Chapter 4

3Situation

flexibility
handled

Flexibility 3
of content 4

implicitly situated Chapter

explicitly situated: hypothetical state Chapter

hypothetical goal Chapter

full flexibility for action commands Chapter

others as appropriate Chapter

Table 3.2: Instructo-Soar's coverage of knowledge and interaction types.

In Soar, as in the PSCM, all activity occurs by applying operators to states within problem

spaces. When a Soar agent cannot make progress within a problem space, an impasse arises, and

a subgoal is generated to resolve the impasse.

The major component of Soar that has not been discussed in the description of the PSCM is

learning. Learning occurs in Soar whenever results are returned from a subgoal. The learning pro-

cess, called chunking, produces new rules, or chunks, that summarize the processing in the subgoal

that led to the creation of the result. Depending on the type of result, chunks may correspond

to any of the types of PSCM knowledge shown in Table 2.1. When similar situations arise in

the future, chunks allow the impasse that caused the original subgoal to be avoided by producing

their results directly. Chunking is a form of explanation-based learning [Rosenbloom and Laird,

1986]. Although it is a summarization mechanism, through taking both inductive and deductive

steps in subgoals, chunking can lead to both inductive and deductive learning. Chunking occurs

continuously, making learning a part of the ongoing activity of the agent.

3.2 The domain

The primary domain Instructo-Soar has been applied to is the simulated robotic domain shown

in Figure 3.1. A 3-D graphical simulator for the domain has been built that runs on Silicon

Graphics machines. Instructo-Soar's techniques have also been applied in a more limited way to a

flight domain [Pearson et al., 1993], in which Soar controls a flight simulator and instructions are

given for taking off

The agent in Figure 3.1 is a Hero robot with one arm and gripper. The robot is in a room that

contains tables, blocks of different sizes and made of different materials, an electromagnet, and a

light that is controlled by two push buttons. The gripper can grasp small blocks and the magnet,
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Figure 3.1: The robotic domain Instructo-Soar has been applied to.
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Properties of single objects:
type (block, magnet, etc.)
location
size
color
gripper status (open/closed)

Relations between objects:

robot docked-at table gripper holding block block on table

A

gripper above-xyz block gripper left-of-xy block
(also right-of-xy)

gripper above-xy block

gripper left-of-xyz block
(also right-of-xyz)

Figure 3.2: The basic properties and relationships known to Instructo-Soar in its robotic domain.

but does not fit around large blocks. Blocks made of metal (either small or large) can be picked

up using the magnet. The magnet's status (on or off) is toggled whenever it is squeezed; that is,

whenever the gripper is closed around it. When off, the magnet is red; when on, it is white. The

light may be off, on and dim, or on and bright. A red button toggles the light on or off; a green

button toggles it dim or bright, when it is on.

3.3 The agent's initial knowledge

Instructo-Soar is made up of a set of problem spaces within Soar. The problem spaces implement

an agent with three main categories of knowledge: natural language processing knowledge, originally

developed for NL-Soar [Lewis, 1993; Lehman et ai., 1991]; knowledge about obtaining and using
instruction; and knowledge of the task domain itselfl This task knowledge is extended through

learning from instruction. The agent's knowledge of how to obtain, use, and learn from instructions

codifies the theory of learning from tutorial instruction.

The Instructo-Soar agent begins with the ability to interact with its instructor and to read

instructions it is given. The agent does not expand its interaction or natural language capabilities

per se as it takes instruction, although it does learn how sentences map onto new operators that are

learned. Reading is done by an augmented version of NL-Soar [Lewis, 1993; Lehman et al., 1991],

a natural language theory being developed within Soar. NL-Soar learns to speed up its processing
as it reads more and more sentences.

The Instructo-Soar agent has the ability to perceive the world around it, and to recognize a set

of basic object properties and relationships between objects. These properties and relationships are

shown in Figure 3.2. The agent perceives the entire visible world at once; shifting of perceptual

attention is not currently modeled.

The agent's initial task knowledge is listed in Table 3.3. It includes the knowledge of a set of

primitive operators: moving to tables, opening and closing the hand, and moving the arm up, down,

and into relationships with objects (e.g., above, left of, or right of things). The agent knows how

natural language sentences map on to each of these operators, and how to execute each operator

externally. It also has an incomplete knowledge of the effects of these operators, that is used when
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Initiallyknown:

• knowledgeto mapfromNL,execute,andsimulateprimitiveoperators

- move-to-'_able

- move-arm (up/doen)

- move-arm(above, left-of, right-of <object>)

- open/close-gripper

- switch-status(light or magnet, on or off) (no execution knowledge)

• knowledge about holding objects

- closing the hand around a small object causes it to be held

- moving the hand when holding causes the held object to move

Initially unknown (all learned in the example of Appendix A):

* no knowledge of complex operators

• no knowledge about controlling the light or magnet

- how pushing the buttons affects the light

- how grasping the magnet affects its status

• no ability to recognize the magnet's status

• no knowledge about magnetism - the magnet's effect on metal objects

• no ability to recognize the magnet stuck-to other objects

# no knowledge of actions to avoid (e.g., grasping explosive objects)

Table 3.3: The initial domain knowledge of Instructo-Soar.

they are internally projected. However, some effects of these operators are unknown to the agent.

The agent knows about holding things; it knows that if it closes its hand around a small object,

then that object is now being held; and it knows that it cannot close its hand around a large object.

However, the agent has very little knowledge about the magnet and the light. It understands what

it means to turn something on or off, but does not know how to turn the magnet or light on or off or

to change the light's brightness. In addition, the agent does not know anything about magnetism;

i.e., that the magnet will attract metal objects. Finally, that agent knows nothing about complex

operators that involve combinations of the primitive operators; e.g., picking up or lining up blocks.

Thus, the agent's initial domain theory is incomplete in a number of different ways. By learning

from instruction, it will fill in and expand its knowledge of the domain. Instructo-Soar does not deal

with incorrect domain knowledge; the knowledge it begins with is assumed to be correct, although

incomplete. This is an area for future work, as described in Chapter 6.

The following sections describe the learning of a new procedure, the extension of a known pro-
cedure to apply in a new situation, and procedure learning when faced with incomplete underlying

domain knowledge. More technical details about Instructo-Soar's implementation can be found

in [Huffman, 1992]. In what follows, the instructor's inputs are given in typewriter font and

Instructo-Soar's responses in italics.
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Pick up the red block.
Move to the yellow table.
Move the arm above the red block.

Move up.
Move down.
Close the hand.

Move up.
The operator is finished.

Figure 3.3: Instructions given to Instructo-Soar to teach it to pick up a block.

3.4 Learning a new procedure

This section describes Instructo-Soar's ability to learn completely new procedures from instruc-

tion. To explain Instructo-Soar's performance, the example of teaching the agent to pick up blocks

will be used. One possible set of instructions for this task is shown in Figure 3.3.

A procedure takes the form of an operator in the PSCM (and thus in Soar). Since picking up

things is not a known procedure initially, when told "Pick up the red block," the agent must learn

a new operator.

To be executed in response to a natural language command, and operator must be selected,

implemented, and terminated. To select an operator based on a natural language command, the

agent must know the argument structure of the operator (a template), and how natural language

maps onto that argument structure. Thus, learning a new operator involves learning each of the

following:

° Operator template: The agent learns what the operator's arguments are and how they

can be instantiated. For picking up blocks, the agent acquires a new operator with a single

argument, which may be instantiated with any object that isn't currently picked up.

. Mapping from natural language: The agent learns to map from natural language semantic

structures to an instantiation of the new operator, so that the operator can be selected when

commanded in the future. For picking up blocks, the agent learns to map the semantic object

of "Pick up ..." to the single argument of its new operator template.

, Implementation: The agent learns how to perform the operator. New operators are per-

formed by executing a sequence of primitive and/or previously learned operators, so the

implementation takes the form of selection knowledge for these sub-operators (e.g., moving

to the proper table, moving the arm, etc.)

, Termination conditions: The agent learns to recognize when the new operator is achieved.

This is the goal concept of the new operator. For "pick up", the termination conditions

include holding the desired block, with the arm up.

The operator template and the natural language mapping are involved in the mapping problem.

Instructo-Soar uses a fairly straightforward approach to the mapping problem, and thus to learning

these parts of a new operator. Namely, the agent assumes that the argument structure of the natural

language command used to request the unknown operator is the required argument structure of

the operator itself. It learns a template containing the arguments in the argument structure (e.g.,

object), and a mapping from the argument structure to the new operator template. This approach

is sufficient for imperative sentences with direct arguments; it would fail for commands with complex

arguments, such as path constraints ("Move the TV into the other room, keeping it as far from the

heater as possible").

To learn a general operator implementation from instructions, an agent must solve the transfer

problem; that is, it must determine the proper scope of applicability of each instruction used in

performance of the new operator. Consider the instruction "Move to the yellow table." Under what
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conditionsshouldtheagentproposemovingto atable,andwhatfeaturesdeterminewhichtable.'?
Instructo-Soarusesthesituatedexplanationtechniquedescribedin thepreviouschapterto solve
thisproblem;it attemptstoexplainhoweachinstructionleadstosuccessfulcompletionofthenew
operator.However,duringtheinitial executionof the instructionsfor a newoperator,theagent
doesnotknowtheterminationconditions(goalconcept)of theoperator,makingit impossibleto
explainhowanyof the instructionsleadto achievementof thoseconditions,asdiagrammedin
Figure3.4.

Theagentwill learntheterminationconditionsof thenewoperatorwhenits initialexecutionis
completed.Thus,duringtheinitial execution,theagentgivesuponexplainingtheinstructionsfor
thenewoperator,andfallsbackonsimplymemorizingtheinstructionsastheyare given (option

1.1 from Table 2.3). This initial learning is based on a weak inductive step: believing what the

instructor says. The learning is rote and overspecific, with an "episodic" flavor. At the end of the

initial execution, the termination conditions of the new operator can be induced. After this, the

agent can form explanations of how each instruction, recalled from its episodic memory, allows the

goal (the termination conditions) to be reached, using a forward internal projection. Based on these
explanations, a general implementation sequence for the new operator is learned.

The details of learning a new procedure will be illustrated with the example of teaching the

agent to pick up blocks. The agent is given the instructions in Figure 3.3 during the course of

performing the task.

3.4.1 First execution

After the first execution of a new procedure, the agent must be able to perform at least the

exact same task without being re-instructed, as specified by requirement 2 ("fast learning") of the

requirements for learning from tutorial instruction (Table 3.1). Thus, the agent must learn, in some

form, each of the parts of the new operator described earlier during the first execution. If some

part of the operator were left unlearned, the agent would not be able to repeat the task without
more instruction.

The first instruction is "Pick up the red block." The language is comprehended to produce a

semantic structure and resolve "the red block" to a block in the agent's environment. However, the

semantic structure produced does not correspond to any known operator, indicating to the agent

that it must learn a new operator. Thus, a new operator template is generated (e.g., new-opl4),

with an argument structure that directly corresponds to the semantic structure's arguments (here,

one argument, object). The agent learns a mapping from the semantic structure to the new

operator, so that if presented with a similar natural language request in the future, it will map to

the new operator.

Next, the new operator is selected for execution. Since the agent doesn't know any implemen-

tation for the operator, it immediately reaches an impasse and asks for further instructions. Each

instruction in Table 3.3 is given, comprehended and executed in turn. These instructions provide

the implementation for the new operator. They are implicitly situated; that is, each instruction

applies to the current situation that the agent finds itself in.

Ultimately, the implementation sequence will be learned at the proper level of generality, based

on explaining how each instructed operator leads to successful execution of the new operator.

During the initial execution, however, this is impossible, because the goal of the new operator is

not yet known. As shown in Figure 3.4, the unknown goal precludes completing explanations. In

addition, the agent does not know the "other steps" (further instructions) needed after the current
instruction.

Thus, the missing knowledge needed to complete the explanation of each instruction includes

knowledge of the steps following the instruction and the termination conditions of the new operator.
Both of these will be available once the performance of the new operator has been completed. Thus,

the agent follows option 1.1 from the set of options for dealing with an incomplete explanation given

in Table 2.4; namely, it gives up on explaining each instruction until after the missing knowledge is
learned. However, the agent is required to learn each implementation step in some form, so that it

can perform at least this same task in the future without requiring further instruction. Thus, the
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instruction being
explained

-- -- -Im_ m --I_- .,, ?
?

Figure 3.4: Instructions teaching a new operator cannot be explained before the goal concept, or
termination conditions, of the new operator are learned.

Recall instruction for.

new-op-14
slot-12: isa block

color red
id blr-r

state:
blk-r on table tab-y

isa move-act
isa move-act object: isa arm
destination: destination:

isa table above object:

color yellow isa block
id tab--y colorred

idblk-r

isa move-ac! [ [
object:isaann t---_[

direction: up [

operator
status: finished

Figure 3.5: The episodic case learned as a side effect of comprehending the instructions for a new

procedure.

agent resorts to rote learning, recording exactly what it was told to do, in exactly what situation.

This recording process is not an explicit memorization step; rather, it occurs as a side effect of

language comprehension. While reading each sentence, the agent learns a set of rules that encode
the sentence's semantic features. These rules allow NL-Soar to resolve referents in later sentences,

by providing a memory of past referents (implementing a simple version of Grosz's focus space

mechanism [Grosz, 1977]). The rules record each instruction, indexed by the goal it applies to

and its place in the instruction sequence. The episodic case that results corresponds to a lock-

step, overspecific sequencing of the instructions given to perform the new operator, as illustrated

in Figure 3.5. For instance, the agent encodes that "to pick-up (that is, new-opl4) the red block,

I was first told to move to the yellow table." Although drawn as a single structure in Figure 3.5,

this encoding actually exists across multiple rules, each specifying a single semantic feature of each
instruction. The properties of this episodic memory are discussed in more detail in Chapter 5.

One issue that arises here is whether and when to generalize the index and the information

contained within the episodic case. However, at this point any generalization would be purely

heuristic, since the agent is unable to explain the various steps of the episode. Thus, Instructo-Soar

takes the overly conservative approach of leaving the case in a fully specific, rote form. There is

some evidence that people are also conservative in generalizing memory of procedural steps [Lewis,

1988].

Finally, after carrying out all of the steps for picking up the red block, the agent is told "The

operator is finished," indicating that the goal of the new operator has been achieved. An explicit

indication is required because the agent has no concept of "pick up" before instruction. The

indication that the new operator's goal has been met triggers the agent to learn the termination
conditions for it.

Learning termination conditions is an inductive concept formation problem. The termination

conditions, or goal concept, of a new operator being learned cannot be derived from the agent's

current knowledge, since the correct concept is chosen completely by the instructor. Standard

concept learning approaches may be used here; however, typically, an instructor will expect learning

within a small number of examples. Instructo-Soar learns the termination conditions for a new

operator from a single example. It heuristically induces a set of termination conditions that are a

subset of the current state, and then allows the instructor to alter, and finally verify, this set of
conditions.

The heuristic used to induce an initial guess at a new operator's termination conditions is

simple: the current (final) state of the world is compared to the initial state the agent was in when
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Figure 3.6: The final state after picking up the red block.

commanded to perform the new operator. Everything that has changed is considered to be a part of
the termination conditions of the new operator. The final state in this case is shown in Figure 3.6.

The changes from the initial state (Figure 3.1) are that the robot is standing at a table, holding a

block, and the block and gripper axe both up in the air. The colors and object types of the block

and table are not included because they did not change.

This simple heuristic forms the system's inductive bias for learning termination conditions. It

gives a reasonable guess, but is clearly too simple. Conditions that changed may not matter; e.g.,
perhaps it doesn't matter to picking up blocks that the robot ends up at a table. Unchanged

conditions may matter; e.g., if learning to build a "stoplight", block colors are important.

Thus, after making the initial inductive guess, the agent presents the induced set of termination
conditions to the instructor, to be altered and eventually verified. The interaction that occurs for

"Pick up the red block" is shown in Table 3.4. The instructor indicates that the robot's being
docked at a table is not important to the goal of picking up an object. The instructor can add

features to the goal concept in a similar way (an examples of this is given in Appendix A). Finally,

the instructor verifies the goal concept, and Instructo-Soax learns the set of termination conditions

for the new "pick up" operator.

Instructo-Soax performs the inductive learning of termination conditions by EBL (chunking)

over an overgeneral theory - one that is able to generate any of the features of the current state
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So I guess doing "pick up the block" means:
the robot is docked at the table

the gripper is closed

the gripper is holding the block

the gripper is raised
the block is raised

Is that right?
> The robot need-not-be docked-at the table.

So I guess doing _pick up the block" means:

the gripper is closed

the gripper is holding the block

the gripper is raised
the block is raised

Is that right?

> Right.

Table 3.4: Instructo-Soar's interaction with its instructor to learn the termination conditions of

a new operator. The dashes between words in the instructor's input simplify natural

language comprehension, which is not the focus of this thesis.

(similar to [Miller, 1993; VanLehn et ai., 1990; Rosenbloom and Aasman, 1990]). This type of
inductive learning has the advantage that the agent can alter its inductive bias to reflect other

available knowledge as appropriate. In this case, the agent uses knowledge gleaned from further

instruction (the instructor's indications of features to add or remove) to alter the induction. Other

knowledge sources that could be employed include analogy to other known operators (e.g., pick up

actions in other domains), domain specific heuristics, etc.

The process of learning termination conditions can be viewed as forming an explanation of the

instruction "The operator is finished." The agent cannot explain why the operator (e.g., "pick up")
is finished because it does not know the termination conditions of the operator. The termination

conditions are the missing knowledge (MK) needed to complete the explanation of the instruction.

In this case the agent can make a good guess at MK using its heuristics for inducing termination

conditions (option 2.1 of the possible options for dealing with incomplete explanations listed in

Table 2.4). The agent applies its heuristics and then moves to option 2.2 (taking further instruction),

allowing the instructor to alter and verify the induction of MK.

Through the first execution of a new operator, then, the agent:

• Carries out a sequence of instructions achieving a new operator.

• Learns an operator template for the new operator.

• Learns the mapping from natural language to the new operator.

• Learns a rote execution sequence for the new operator, as a side effect of natural language

comprehension.

• Learns the termination conditions of the new operator.

Since the agent has learned all of the necessary parts of an operator, it will be able to perform the

same task again without instruction. However, since the implementation of the operator is a rote,

episodic memory, it can only perform the exact same task. It has not learned generally how to pick

up blocks yet.
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If the goal (higher-level operator) is new-op-14 with object <obj>, and

<obj> is sitting on a table <table>, and

the robot is not docked at <table>, and

<obj> is small, and

the gripper has status open,

then propose operator move-to-table(<table>).

Figure 3.7: The general operator proposal rule learned from the instruction "Move to the yellow

table" (new-op-14 is the newly learned "pick up" operator).

3.4.2 Generalizing the new operator's implementation

The agent now knows the goal concept and full (though rote) implementation sequence for the

new operator. Thus, it now has the knowledge that it needs to explain how each instruction in the

implementation sequence leads to goal achievement, provided its underlying domain knowledge is

sufficient. By explaining each instruction in the sequence, the agent will learn the implementation

of the new operator in a general form that will transfer to an appropriate range of similar situations.

Each instruction is explained by recalling it from episodic memory and internally projecting its

effects and the rest of the path to achievement of the termination conditions of the new operator.

The explanation indicates the crucial features of the instruction and situation that lead to success.

These crucial features are combined into a general rule that proposes the instructed operator under

the right conditions. For example, the rule learned for the instruction, "Move to the yellow table"

is shown in Figure 3.7. The rule generalizes the original instruction by not including the color
of the table, because it was not critical for _hievement of the "pick up" goal. It specializes the

original instruction by adding the fact that the table has the object to be picked up sitting on it,

and that the object is small (only small objects can be grasped by the gripper). The rule also

includes the fact that the gripper is open, because this was important to being able to grasp the
block in the instructed case. The details of how Soar's chunking mechanism produces such rules

based on forward projections are described in Appendix C.

After learning the general proposal rules for each step in the instruction sequence, the agent

will perform the task without reference to the rote case. For instance, if asked to "Pick up the

green block," the rules for mapping language semantics to an operator apply, causing new-op14 to

be generated and instantiated with the green block as its argument, lJev-opl4(greea block) is

selected to be performed. Then, the general sub-operator proposal rules for new-opl4 fire one by

one as they match the current situation, to implement the operator. For instance, when the robot is

not docked at the proper table, the rule shown in Figure 3.7 will match, causing the move-to-table

operator to be selected and performed. After the agent has performed all of the implementation

steps of new-opl4, it recognizes that the termination conditions are met (the gripper is raised and

holding the green block), and new-opl4 is terminated.

Since the general proposal rules for implementing the task are directly conditional on the state,

the agent can perform the task starting from any state along the implementation path and can

react to unexpected conditions (e.g., another robot stealing the block). In contrast, the rote imple-

mentation that was initially learned applies only when starting from the original initial state, and

it is not reactive because its steps are not conditional on the state.

Instructo-Soar learns general rules from instructions for a new procedure by recalling and ex-

plaining them at some point after their first execution. An alternative would be to try to explain
the instructions during their first execution. During-execution explanation would require observing

the effects of each instructed action when it is executed and explaining (deriving from knowledge)

which state properties lead to each observed effect (for exa.mple, closing your hand when above a
block causes it to be held, while other features, such as the block's color, are not causally related).

Thus, the agent would have to keep track of not only the observed state, but also the derivations of

each observation - essentially, a second state representation. At the end of the first execution, the
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important net effects of the instruction sequence are determined, in the form of learning the new

operator's termination conditions. After learning these termination conditions, an agent forming

explanations during the first execution would chain backwards from the termination conditions

through its explanations of the effects of each instruction, to build an overall explanation of all of
the instructions. This kind of processing is a viable alternative to the post-execution recall and

explanation process used here. However, it has the disadvantage that the agent must keep track of
both an observed and a derived state, and keep the two in correspondence.

3.4.3 Recall strategies

The agent has a number of options for when to recall and form explanations of the instruction

sequence. The possibilities include:

1. Introspective recall. The agent recalls and attempts to explain the full sequence of instruc-

tions for the new operator immediately after completing the new operator and learning its
termination conditions.

2. Multiple recall. The agent recalls and attempts to explain the full sequence of instructions

for the new operator upon being asked to perform the operator again starting from the same

initial state.

3. Single recall. The agent recalls and attempts to explain single instructions in the sequence

upon being asked to perform the operator again starting from the same initial state. That
is, at each point in the execution of the operator, the agent recalls the next instruction, and

attempts to explain it by forward projecting it; but if this projection does not result in a path

to goal achievement, rather than recalling the next instruction in the sequence to continue

the forward projection, the agent gives up on explaining this instruction and simply executes
it in the external world.

Each of these recall strategies is implemented in Instructo-Soar. Which strategy to use is a

parameter of the agent; the agent cannot dynamically select among strategies while it is running.

In what follows, each recall strategy is described in more detail.

Introspective recall

In the introspective recall strategy, the agent recalls and explains ("introspects about") the

entire instruction sequence immediately after completing its first execution of the new operator

being learned. This involves an internal forward projection of multiple operators, beginning at the

state the agent was in when the new operator was first suggested. In the "pick up" case, it is
the state in which the robot is standing in the corner of the room, with its arm down and holding

nothing. Starting (internally) from this state, the agent recalls and simulates each of the instructions

in turn, eventually reaching the termination conditions of the new operator. This multiple operator

projection explains each of the operators in the implementation sequence, provided the termination

conditions of the new operator are achieved.

The advantage of this strategy is that the agent learns a fully general version of the new operator

right after its first execution. The agent can pick up other objects right away.

The strategy has three disadvantages. First, it requires that the agent remember the initial state

in which it was commanded to perform the new operator. This may be difficult if the amount of

information in the state is large (although it is not in the robotic domain being used here). When

there is embedded instruction for multiple new operators, multiple states must be remembered.

Second, the multiple step recall and simulation required (forward projection of the entire se-

quence of instructed operators) can be time consuming. The introspection requires an amount of

time proportional to the length of the sequence of instructions. Thus, the agent's ongoing perfor-
mance of the tasks at hand is temporarily suspended. This could be awkward if the new procedure

being learned is nested within a larger task that must still be completed, or if the agent is under

pressure to act quickly.
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Figure 3.8: The multiple step projection required by the introspective and multiple recall strategies

can result in incomplete explanations due to compounding of errors in the agent's

domain knowledge.

Third, multiple step projection is susceptible to the compounding of errors in the agent's un-

derlying domain knowledge. The projection of each successive operator begins from a state that

reflects the agent's knowledge of the effects of the prior operators in the sequence, as shown in Fig-

ure 3.8. If this knowledge is incomplete or incorrect, then the state can move further and further
from reflecting the actual effects of the prior operators. This can lead to incomplete explanations, or

(more rarely) to spuriously successful explanations (e.g., reaching success too early in the instruc-

tion sequence). Minor domain knowledge problems in the knowledge of individual operators, that

alone would not result in an error in a single step explanation, may combine within the projection
to cause an error.

The single recall strategy overcomes the problems of multiple step projection, but requires

multiple executions to learn the full general implementation of the new operator, as described
below.

Multiple recall

In the multiple recall strategy, the agent waits to recall and explain the full implementation

sequence of the new operator until asked to perform the new operator a second time, starting

from the same initial state. When asked to again pick up the red block, the agent selects the

newly learned operator, and then recalls the instructions it was given during the first execution and

attempts to explain them. As in the introspective strategy, in the multiple recall strategy the agent

recalls and projects multiple operators. However, this strategy does not require that the agent

recall the initial state for the projection. For small domains like Instructo-Soar's robotic domain,

this is only a minor advantage. The disadvantage of this strategy as compared to the introspective

strategy is that it requires two executions of the new operator to learn a general implementation.

Single recall

Like the multiple recall strategy, in the single recall strategy the agent waits until asked to

perform the new operator again before attempting to recall and explain the implementation in-

structions. In this strategy, however, the agent only recalls a single instruction to internally project

at a time. After the recalled operator is projected, the agent applies whatever general knowledge

it has about the rest of the implementation of the new operator. If the agent does not know the

rest of the generalized path to complete the new operator, however, it does not recall any further

instructions in the sequence. Bather, the internal projection is terminated and the single recalled

operator is applied in the external world.

The single recall strategy requires a number of executions of the new operator equal to the length

of the instruction sequence to learn the general implementation. This is because limiting recall to a
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Figure 3.11: A graphical view of a flat instruction sequence for move-left-of (blkl,blk2).

single step allows only a single sub-operator per execution to be generalized. This is single recall's

major disadvantage as compared to the other strategies, but also leads to some interesting learning
characteristics:

Bottom-up learning. Generalized learning has a "bottom-up" form, starting at the end of

the implementation sequence and moving towards the beginning. On the second execution of

the new operator, a path to the goal is known only for the last instruction in the sequence (it

leads directly to goal completion), so a general proposal for that instruction is learned. On the
third execution, after the second to last instruction is internally projected, the proposal learned

previously for the last operator applies, leading to goal achievement within the projection

and allowing a general proposal for the second to last instruction to be learned. This pattern

continues back through the entire sequence until the full implementation has been learned

generally. As Figure 3.9 shows for learning "pick up", the resulting learning curve closely

approximates the power law of practice [Rosenbloom and Newell, 1986] (r - 0.98). Figure 3.10

shows a similar curve for learning to move objects left of one another (r = 0.98).

Effectiveness of hierarchical instruction. Due to the bottom-up effect, the agent learns

a new procedure more quickly when its steps are taught using a hierarchical organizations

than when they are given in a fiat sequence. Figure 3.11 depicts a fiat, nine step instruction

sequence for teaching Instructo-Soar to move one block left of another; Figure 3.12 depicts a
hierarchical instruction sequence for the same procedure, that contains 13 instructed opera-

tors, but a maximum of three in any subsequence. By breaking the instruction sequence into

shorter subsequences, a hierarchical organization allows multiple subtrees of the hierarchy

to be generalized during each execution. General learning for an N step operator takes N

executions using a fiat instruction sequence. Taught hierarchically as _ sub-operators with

steps each, only 2v/'N executions are required for full general learning. The number is

2v/_ rather than only _ because lower subtrees in the hierarchy must be generalized before

they can be integrated into higher subtrees. For instance, for the hierarchy of instructions
in Figure 3.12, grasp's implementation must be generalized before grasp can be included

in the general implementation for pick up. More broadly, a sequence of N actions taught
as an H-level hierarchy with _/_ subtasks in each subsequence takes H • _/_ executions

to generalize. The hierarchy in Figure 3.12 has an irregular structure, but still results in a
speedup because the length of every subsequence is small (in this case, smaller than v/N).

As shown in Figure 3.13, the fiat sequence of Figure 3.11 takes nine (N) executions (after
the initial execution where the instructions are given) to generalize, whereas the hierarchical

sequence takes only six (2v/N). Hierarchical organization has the additional advantage that

more operators are learned that can be used in future instructions.

The single recall strategy overcomes the problems of multiple step projection. The recall and

projection of a single instruction at a time does not require a time consuming introspection that

suspends the agent's ongoing activity. Figure 3.14 illustrates this empirically, comparing the time
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Figure 3.12: A graphical view of a hierarchical instruction sequence for move-left-of (blkl, blk2).
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a flat instruction sequence to a hierarchical sequence (using the single recall strategy).
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Figure3.14: Decision cycles before external action vs. learning trial while learning "pick up",

comparing the single- and multiple-recall strategies.

(in decision cycles) before an external action is taken on each execution of "pick up" when using

the single and multiple recall strategies. The entire recall and explanation time is proportional to

the length of the instruction sequence in both cases, but in the single recall strategy, that time
is interleaved with the execution of the instructions rather than fully taken before one execution.

The single recall strategy also overcomes the problem of compounding of domain theory errors,

by beginning the projection of each instruction from the current state of the world after external

execution ofthe previous instructions. Thus the beginning state of each projection correctly reflects

the effects of the previous operators in the implementation sequence. The single and multiple recall

strategies are actually endpoints of a continuum of strategies involving recall of any intermediate
number of instructions.

3.5 Extending a procedure to a new situation

In addition to unknown procedures, an instructable agent may be asked to perform a known

procedure in an unfamiliar situation - one from which the agent does not know how to successfully

perform the procedure. An example is contained in the instructions for "Pick up the red block"

shown in Figure 3.3, when .the agent is asked to "Move above the red block." This is one of

the agent's primitive operators: it knows the operator's goal concept (having its hand above the

object), and it knows how to perform the operator when its arm is raised. The arm being raised is

a precondition for the operator, from the perspective of the agent's current knowledge. However,
in this case the arm is lowered, and so the agent does not know how to perform the instruction.

One option the agent could follow would be to search; i.e., to apply a weak method such as

means-ends analysis. In this example, the reasoning would be fairly easy: the agent would simply

need to figure out how to reach a state in which the arm is raised. In other cases, when the current

state differs significantly from states where the instruction's "preconditions" are met, the search
involved could be costly. In any event, since the goal of Instructo-Soar is to investigate the use of

instruction, the Instructo-Soar agent always asks for instruction when it reaches an impasse in task
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If the goal is move-arm(destination (above <obj>)), and

<obj> is sitting on a table <table>, and
the robot is docked at <table>, and

the arm is lowered

then propose operator move-arm(up).

Figure 3.15: The operator proposal rule learned from the instruction "Move up" that extends the

agent's ability to move above things to a new situation.

performance, rather than searching)

Thus, the agent is told to "Move the arm up," and (as usual) attempts to explain this instruction

through forward internal projection. The agent starts the projection from the current state, in which
the robot is docked at the table with the red block on it, and the arm is down. The first step is

to move the arm up within the projection. At this point, the implementation of "move above"

applies, moving the arm above the red block. From this explanation of how moving up enables

moving above, the agent learns the operator proposal rule shown in Figure 3.15. This rule extends

the agent's knowledge of the "move above" operator to apply in the new situation. (The agent
would have learned a similar rule if it had solved the problem through search rather than receiving

instruction.)

"Move above" may be extended further through more instruction. For instance, the agent could
be asked to "move above" before it is docked at the table the object is on, and learn to first move to

that table. Extending an operator to a new situation could also require multiple steps. If multiple

steps are used, they can be recalled and explained using any of the three recall strategies described

in the previous section.

Newly learned operators may require extension to new situations as well. This is because

when the agent learns the general implementation for a new operator, it does not reason about all

possible situations that the operator might be performed in, but limits its explanations to the series
of situations that arises during the actual execution of the new operator while it is being learned.

In the example given in Appendix A, after learning to pick up things, the agent is asked to pick up

a block while holding another block. The instructor must tell the agent to first put the held block

down, which then allows the agent to pick up the other block. The agent learns to put down what

it is holding before trying to pick up something else.

Notice again the flexibility afforded by allowing the instructor to command an operator at any

time, regardless of the agent's current knowledge (requirement 7 of Table 3.1). The instructor does
not have to keep track of what procedural knowledge the agent has, or avoid certain commands in

certain situations; rather, instructions can be used to organize and extend tasks as the instructor

wishes.

3.6 Dealing with incomplete underlying domain knowledge

All of the general implementation learning described thus far in this chapter depends on the

agent being able to form complete explanations of each instruction using its prior domain knowledge.
What if the domain knowledge is incomplete, making explanation impossible? For instance, what

if the agent does not know about some of the key effects of its primitive operators?

As described in Chapter 2, a missing piece of knowledge, MK, anywhere within the implemen-

tation sequence for a procedure being learned or extended, can result in an incomplete explana-

tion. For implementation sequences consisting of multiple operators, pinpointing what knowledge

is missing is an extremely difficult credit assignment problem (sequences known to contain only one

operator, however, are a more constrained case, as described in the next chapter). In general, an

1Nothing in Instructo-Soar precludes the use of search or knowledge from other sources, however. In fact, one of

Soar's strengths is integrating knowledge from different sources.
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explanation failure that is detected at the end of the projection of an instruction sequence could be
caused by missing knowledge about any operator in the sequence.

Thus, it is difficult to make a heuristic guess at the missing knowledge MK, and it is unknown

whether that knowledge will be acquired at some future point. Since the explanation cannot be
completed without MK, the agent's course of action is to abandon explanation and instead learn the
knowledge IK (here, operator proposal knowledge, as in Figures 3.7 and 3.15) from each instruction
I directly, without the support of an explanation (option 2.1 from Table 2.4). That is, each proposal
rule Ig is learned inductively, by applying a set of heuristics and then allowing the instructor to
alter and eventually verify the resulting knowledge.

This performance is best illustrated by an experiment in which all of Instructo-Soar's knowledge

of secondary operator effects (frame axiom type knowledge) for the primitive operators are removed
before instruction. For example, although the agent knows that closing the hand causes the gripper
to have status closad, it no longer knows that closing the hand when directly above a block
causes the block to be held. Secondary effects knowledge is used when internally projecting the
effects of operators. A real agent is more likely to lack this type of knowledge (e.g., knowledge of
some rare secondary effect of an action) than to lack basic knowledge about its primitive operators,

such as their primary effects or termination conditions.
With this knowledge removed, the agent is taught a new procedure, such as to pick up the

red block. After the first execution, the agent attempts to recall and explain the implementation
sequence as usual. However, since secondary operator effect knowledge is missing (e.g., the knowl-
edge that closing the gripper causes the block to be held), the forward internal projection used to
explain the instruction sequence does not achieve the goal of the new operator (e.g., the block is
not picked up at the end of the projection, since the agent's knowledge did not indicate it is held).
The inability of the projection to achieve the new operator's termination conditions constitutes
an explanation failure, and the agent records (by learning a chunk) the fact that this procedure's
instructions cannot be explained.

Later, the agent is again asked to perform the procedure from a similar initial state. Since
the agent has not yet learned a general implementation for the procedure, the past instructions
are recalled. However, the agent also recalls that explaining the instructions failed in the past.
Thus, rather than trying to explain each instruction I, the agent uses heuristics to induce proposal
knowledge IK directly, and then allows the instructor to alter and verify this proposal.

For instance, in the "pick up" example, the agent first recalls the command to move to the
yellow table. The general knowledge Itc to be learned from this command is an operator pro-
posal rule like that shown in Figure 3.7. Operator proposal rules propose an operator OP (e.g.,
move-to-table (<yellow-table>)) in a state 5' to achieve a goal G (e.g., new-op-14 (<red-block>)).
To induce such a rule the agent must induce the conditions on G and S under which to propose
OP. For the goal G, Instructo-Soar uses the simple heuristic that its name and the types of objects
filling its slots are the key features. Here, the name is new-op-14 (the name generated for the "pick
up" operator); and there is a single slot, filled with an object that isa block. To determine the
conditions of the state, Instructo-Soar employs two simple heuristics:

• OP-to-G-path. For an object O1 attached to OP (filling a slot, e.g., obj.cl;), and an object
02 attached to G, compute the shortest path of relationships between O1 and 02 of length
(heuristically) less than 3. Each of the features that appears along the path are considered
important conditions.

This heuristic captures the intuition that if OP involves some object, its relationship to the
objects that are relevant to the goal G may be important. The heuristic's operation for "move
to the yellow table" is shown in Figure 3.16. As the figure indicates, there is a path between
the red block, the object of G (pick up the red block), and the yellow table, the destination

of OP (move to the yellow table). The path contains the feature that the block is on the
table, which is added to the inferred set of conditions for proposing OP.

• OP-features-unachieved. Each termination condition of OP that is not achieved in S (the
state before OP is performed) is considered an important condition.
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G: new-op-14 ("pick up")
ob)ect: <red-block>

_block>

OP: move-to-table _ 'qP/All

destination: <yello___.__

ON <yellow-table>

Figure 3.16: The use of the OP-to-G-path heuristic, with OP "move to the yellow table," and G

"pick up the red block."

So I'm guessing the conditions for doing "move to the table"

when your goal is "pick up the block" are:
the robot is not docked at the table

the block is sitting on the table

Is that right?

> Right.

Table 3.5: Instructo-Soar's interaction with its instructor in inducing an operator proposal rule.

This heuristic captures the intuition that all of the primary effects of OP (as encoded by

its termination conditions) are probably important; therefore, it matters that they are not

achieved when OP is chosen to be performed. For the move to the yellow table instruction,

OP's primary effect is that the robot ends up docked at the table. Thus, the fact that the

robot is not initially docked at the table is added to the inferred set of conditions for proposing
OP.

Once the heuristics induce a set of conditions for proposing OP, the results are presented to
the instructor, who can alter and eventually verify them. The interaction in this case is shown in

Table 3.5. In this example, the heuristics have actually identified a reasonable set of features, so

the instructor simply verifies the result. In other cases, the set of features must be altered. The

operator proposal rule learned from this exchange is shown in Figure 3.17. It is similar to the

rule learned from explanation (Figure 3.7), but only applies to picking up a block, and does not

stipulate Chat object must be small.

Identifying the relevant conditions for selecting an operator can be difficult for the instructor,

who must consider interactions between the conditions and the operator's effects in all possible

situations. Of course, this is the same difficulty faced by a programmer when trying to program the

agent for new tasks. Instructo-Soar allows this problem to be avoided when its domain knowledge

is sufficient, and aids the instructor through the use of heuristics to help identify relevant conditions

when its domain knowledge is insufficient.

After its proposal rule is learned, the "move to table" operator is applied in the external world.

However, the agent still has not achieved the "pick up" goal, and so an impasse is reached, and the

agent recalls the second instruction in the sequence, "Move above the red block." A proposal rule

for this instruction is induced in the same way; the interaction is shown in Table 3.6. In this case,

the instructor adds a condition: the robot must already be docked at the appropriate table before

doing the "move above" action. If the instructor overlooks this condition, then both the "move to

the table" and "move above" actions will be proposed simultaneously during future executions of

the "pick up" procedure, requiring more instruction to learn which is preferred.
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If the goal (higher-level operator) is new-op-14 with object <obj>, and

<obj> is a block, and

<obj> is sitting on a table <table>, and
the robot is not docked at <table>

then propose operator move-to-table(<Zable>).

Figure 3.17: The operator proposal rule learned for "Move to the yellow table" by direct induction,

when domain knowledge is insufficient to explain the instruction.

So I'm guessing the conditions for doing "move above the block"

when your goal is "pick up the block" are:
the arm is not above the block

Is that right?

> The robot must be docked-at the yellow table.

So I'm guessing the conditions for doing "move above the block"

when your goal is "pick up the block" are:
the arm is not above the block

the robot is docked at the table

Is that right?

> Right.

Table 3.6: Induced conditions for an operator proposal can require alteration.

The process of learning a proposal rule and then executing the proposed operator occurs for

each of the instructions, allowing the agent to learn a full, general implementation for the "pick

up" operator. However, this implementation is not as correct as that learned from explanation;

e.g., it applies to any block instead of to any small object. In a more complex domain, inferring

general implementations would be even less successful. Psychological research shows that subjects'

learning when given procedural instructions degrades if they do not have a domain model [Kieras

and Bovair, 1984].

The process of directly learning operator proposal rules allows the agent to overcome incomplete

domain knowledge, but is burdensome to the instructor, who must examine and alter/verify the

conditions of proposing each operator. An incomplete explanation for a procedure probably indi-

cates that some effect(s) of one of the operators in the procedure's instruction sequence is unknown.

Thus, one alternative (which has not been implemented in Instructo-Soar) would be for the agent

to deliberately observe the effects of each operator in the sequence as it performs them, comparing

its observations to the effects predicted by its domain knowledge. Any differences that are noticed

would allow the agent to induce new knowledge about operator effects that could allow the expla-

nation of the procedure to be completed. Learning about the effects of operators from observation

has been explored by a number of researchers (e.g., [Thrun and Mitchell, 1993; Pazzani, 1991b;

Shen and Simon, 1989; Carbonell and Gil, 1987; Sutton and Pinette, 1985]). Instructo-Soar's learn-

ing of termination conditions for a new operator amounts to learning by observing the effects of a

sequence of actions; learning operator effects from observation could be added as a variation of the

same process.

Another alternative would be to learn about the unknown operator effects through instruction.

Instructo-Soar is able to learn about the effects of operators through instruction in some cases, as

described in the next chapter. However, because an explanation of a multiple-step procedure may

fail because of missing knowledge about any effect of any of its steps, it is impossible in general for
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moveleftof(blockl,block2) ]

[pick up (block)]--_ move to table (table):-_ put down (block)[ -_- _m°ve arm up.....

_,=_)!_1 move arm uP!L i move arm down--:-- open gripper.... i

!move to ,able (,able)_-_ moveabove (block) _ move arm down_: close gripperi

' i

move arm up' i

Figure 3.18: A hierarchy of operators learned by Instructo-Soar. Primitive operators are shown in

light print; learned operators are in boldface.

the instructor (or the agent) to pinpoint what knowledge is missing based on this kind of explanation
failure. Since identifying the unknown knowledge would be so difficult for the instructor, when the

explanation of a multiple-step procedure fails, the agent resorts to directly inferring proposal rules

rather than asking for further instruction.

3.7 Conclusion

This chapter has described Instructo-Soar's learning of completely new procedures, and the

extension of known procedures to apply in new situations, from tutorial instructions. The agent

supports flexible, hierarchical instruction, because at any point the instructor can request either a

known procedure, an unknown procedure, or a known procedure that the agent does not know how

to perform in the current state. This can lead to multiple levels of embedded instruction.

Newly learned operators may be specified in instructions for later operators, leading to learning

of operator hierarchies. For example, a hierarchy of operators learned by Instructo-Soar is shown in

Figure 3.18 (a subset of the learning described in Appendix A). Learning of procedural hierarchies
has been identified as a fundamental component of children's skill acquisition from tutorial instruc-

tion [Wood el al., 1976]. In learning the hierarchy of Figure 3.18, the agent learned four completely

new operators (shown in bold), how to achieve preconditions for a known operator (move above),
and the extension of a new operator (extending "pick up" to work if the robot already is holding

a block). Because Instructo-Soar supports flexible interaction for commands, the hierarchy can be

taught in many different ways. For instance, new operators that appear as sub-operators (e.g.,

grasp) can be taught either before teaching higher operators (e.g., pick up), or during teaching of
them.

Learning of new procedures involves both inductive and analytic learning. In addition to learning

from successful explanations (analytic learning), this chapter contains examples of all four of the

options for dealing with incomplete explanations described in Chapter 2 (Table 2.3). From the
initial execution of a new operator, the agent learns a rote, overspecific implementation sequence

(option 1.1). At the end of the first execution, termination conditions for the new operator are

induced (option 2.1), based on the difference between initial and final states, and feedback from

the instructor (option 2.2). Later, the implementation sequence is moved to the proper level of

generality through situated explanation, in which the agent recalls the instructions and explains to

itself using forward internal projection how each instruction leads to completion of the new operator

(successful explanation). If the agent's underlying domain knowledge is insufficient to successfully

explain the instructions for a procedure, Instructo-Soar resorts to a strategy in which it directly

induces operator proposal knowledge from each instruction (option 1.2). This can lead to high

quality learning in simple cases, but in general the learning will be of lower quality than learning
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Requirement Met in Chapter 3

1. General learning from specific cases _/

2. Fast learning (each task instructed only once) _/

3. Maximal use of prior knowledge x/

4. Incremental learning x/

5. Ability to learn all types of knowledge used in task

performance
a. state inference

b. operator proposal x/

c. operator preferential

d. operator effects

e. operator termination _/

6. Agent-initiated instruction _/

7. Flexibility of knowledge content

a. full flexibility for action commands _/

h. others as appropriate

8. Situation flexibility

a. implicitly situated x/

b. explicitly situated: hypothetical state

hypothetical goal

Table 3.7: The transfer and interaction requirements of tutorial instruction to be met, and those

met thus far in the description of Instructo-Soar.

from explanations; in addition, the burden on the instructor is increased.

Table 3.7 indicates the transfer and interaction requirements of tutorial instruction that have

been met at this point in the description of Instructo-Soar. Chapter 4 completes the description of

Instructo-Soar by describing its use of explicitly situated instructions, and its coverage of each of

the outstanding knowledge types remaining to be covered in Table 3.7.



Chapter 4

Instructo-Soar: Towards a Complete Instructable

Agent

This chapter describes Instructo-Soar's coverage of each of the remaining requirements for a

theory of tutorial instruction shown in Table 3.7. In particular, it discusses Instructo-Soar's ability

to learn state inference knowledge, operator preferential knowledge, and knowledge about operators'

effects, and its handling of a variety of types of explicitly situated instructions. Demonstrating

these capabilities also reveals the interaction supported by Instructo-Soar for instructions other

than action commands.

The agent's capabilities are demonstrated primarily by a series of selected examples. Although

each example demonstrates a different capability, the chapter is organized such that the instructions

given to the agent in the course of the chapter form an overall instruction scenario. The instructions
build on one another in the sense that knowledge that the agent learns from earlier examples is

sometimes used in later examples.

The examples primarily involve teaching the agent about the electromagnet and the light in

its domain. At the outset, the agent knows very little these objects; it can perceive their visible

properties, but does not know how to control them or (in the magnet's case) about their effect

on other objects. It is assumed that the agent has already been taught procedures for pushing

a button, for dimming and brightening the light, and for grasping objects, using the techniques

described in the previous chapter. By the end of the instruction scenario of this chapter, the agent

has learned how to control the magnet, how to turn on the light and keep it in a preferred status

(on and dim), and enough knowledge of the effects of magnetism that it can pick up metal objects

by using the magnet.

4.1 Learning from hypothetical states

Recall that the sztuatWn an instruction applies to includes a state, a goal (a higher level opera-

tor to be achieved), and an expectation about the instruction's effect at achieving the goal (either

success, immediate success, failure, or immediate failure). The instructions in this section are ex-

plicitly situated; each explicitly specifies a hypothetical state that it is meant to apply to, rather

than applying to the current world state. Instructo-Soar constructs a hypothetical state based on

the semantic content of an explicitly situated instruction in a straightforward way; it includes in the

state each of the objects, properties, and relationships mentioned in the antecedent of the instruc-

tion, as well as any objects that are needed to carry out the consequent. Once the hypothetical

state is constructed, the agent attempts to explain and learn from the instruction, by using the

constructed hypothetical state as the beginning state for an internal projection.

4.1.1 Learning state inference knowledge

State inference knowledge is knowledge about object properties and relationships that can be

inferred based on the properties and relationships that currently hold. In Soar, this knowledge takes

57
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magnet with status on (powered)

block with material metal

Figure 4.1: The partial hypothetical state built from the conditional state inference instruction, "If

the magnet is powered, and directly above a block, and the block is metal, then the

magnet is stuck to the block."

If the state has objects <magnet> and <block>, and

<magnet> isa magne'c with status on, and

<block> isa block with material metal, and

<magnet> is directly-above <block>,

then <magnet> is stuck-to <block>.

Figure 4.2: The state inference rule learned from a conditional instruction.

the form of productions that test state conditions and produce new state properties and relations,

without reference to any operator. These productions produce their results immediately whenever

the state meets their conditions, and retract their results whenever their conditions no longer hold.
Instructo-Soar learns state inference rules from three different kinds of instructions:

1. Simple, specific statements; e.g., "The grey block is metal."

2. Simple, generic statements; e.g., "White magnets are powered"; "Red magnets are off."

3. Conditional statements; e.g., "If the magnet is powered, and directly above a block, and the

block is metal, then the magnet is stuck to the block."

State inference instructions may introduce new properties or relations that were previously unknown

to the agent. Thus, these statements can be used to extend the representation vocabulary that the

agent uses to represent its world. For example, the relation stuck-to is not known to the agent

before it is given the conditional instruction (3) above. Similarly, the agent can learn to associate

new features with particular objects. For example, through the generic statements (2) above, the
agent learns that magnets have a status - either powered or not.

The agent recognizes that an instruction communicates a state inference by the lack of any action

being mentioned in the instruction. To learn state inferences, the system begins by constructing a

hypothetical state containing the objects and properties mentioned in the statement. For simple

statements like the examples above, the object mentioned before the copular verb is included in

the hypothetical state; e.g., the grey block in example (1). Indefinite references in the instruction

produce generic objects in the hypothetical state; definite references produce specific objects (with

unique identifiers) from the current world state. For conditionals like (3), each of the conditions in
the antecedent specifies a part of the hypothetical state. The hypothetical state constructed from

(3) is shown in Figure 4.1.

After creating the hypothetical state, the agent simply asserts that the concluded property or

relationship specified in the instruction holds in that state. For simple statements, the agent asserts

the property specified after the copular verb (e.g., material metal); for conditionals, it asserts the

consequent (e.g., the magnet is stuck-to the block). The assertion causes Soar to create a chunk

that creates the property based on the conditions in the hypothetical state - a state inference rule.

The chunk learned from the conditional instruction (3) above is shown in Figure 4.2.

Currently, Instructo-Soar does not use an explanation process to learn state inferences, since

the focus of this work has been on learning procedural knowledge. An extension would be to try
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If the goal ishappiness, and

<light> isa light with id lightl and status off

then propose operator switch-status(object <light>, status on).

Figure 4.3: The operator proposal rule learned from the conditional instruction "If the light is off
then turn on the light."

to explain why an instructed inference holds in the hypothetical state, possible resulting in more

general learning.

4.1.2 Learning operator proposal knowledge from hypothetical states

Consider the following instructions:

> If the light is off, then turn on the light.

Why?
> Trust me.

This conditional instruction indicates an operator that is to be proposed under a particular set

of state conditions. It applies to a hypothetical situation with a hypothetical state specified by

the instruction's antecedent. The goal of the hypothetical situation is the agent's top level goal,

happiness, since the agent is not pursuing any other goals.

The agent creates a hypothetical state from the conditional instruction that contains a light

that is off. Starting from this state, the agent attempts to explain the instruction by internally

projecting the action of turning on the light. 1 However, turning on the light within the projection

does not result in any increase of happiness; the agent does not understand why having the light

on should make it any happier. Thus, the explanation of the instruction cannot be completed.

Failure to complete an explanation indicates missing knowledge. Here, because the instruction

involves a single action to be taken under specific state conditions, the agent makes the heuristic

guess that the missing knowledge does not involve further action (operators), but instead involves

knowledge about the state. Thus, the agent asks for further instruction to gain that knowledge

(option 2.2 from the set of strategies for dealing with incomplete explanation given in Table 2.4).

In this case, the instructor declines to give more instruction, by saying Trust me. This in-

struction indicates that the agent will not be given any further information, and must induce the

reason that turning on the light should be successful (that it should cause happiness) based on its

current knowledge. Since the agent does not know what features of the hypothetical state with the

light on cause happiness, it takes the conservative approach of assuming that all the features of the

hypothetical state must be relevant. Here, the state includes only the light that is on, so the agent

asserts that when the light is on, happiness is met.

Asserting that the state with the light on achieves happiness completes the explanation of the

"Turn on the light" action, and allows the agent to learn the desired operator proposal rule for the

action, shown in Figure 4.3. The proposal rule applies to a specific light, lightl, because of the

definite reference to the light in the original instruction.

Consider a second example:

> If the light is bright then dim the light.

Why?

> Dimmed lights use little electricity.

> Bright lights use much electricity.

1The agent actually has not yet learned how to turn on the light (this will be learned later, as described below),
but it does know the termination conditions of this operator, and so can simulate the primary effect, switching the
light's status from off to on.
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If the state has object <light>,and

<light > isa light with brightness dim,

then <light> has electricity-consumption low.

Figure 4.4: The state inference rule learned from "Dim lights use little electricity."

If the goalis happiness, and

<light> isa light with electricity-consumption large

then propose operator new-op-47(object <light>).

Figure 4.5: The operator proposal rule learned from the conditional instruction "If the light is

bright then dim the light." New-op-47 is the procedure learned previously to dim the

light.

Again, the agent builds a hypothetical state (with a bright light) and then projects the instructed

action (dimming the light). In this example, the instructor chooses to give instructions to explain

why dimming a bright light leads to happiness. From the instruction "Dimmed lights use little

electricity," the agent learns a state inference rule (as described in the previous section), shown in

Figure 4.4. This rule applies to the final state of the projection, with the light dimmed. When told

"Bright lights use much electricity," the agent learns a similar rule that applies to the initial state

of the projection, with the bright light. This triggers a part of the agent's prior knowledge about

happiness. The agent knows that reducing the use of an expensive resource like electricity increases

happiness. Thus, happiness is achieved in the internal projection, completing the explanation of

the original instruction, and the agent learns the operator proposal rule shown in Figure 4.5. This

rule generalizes the original instruction slightly, due to the explanatory instructions; it applies to

any light that is consuming a large amount of electricity, rather than only the specific bright light
referred to in the instruction.

4.1.3 Learning about contingencies

The conditional instructions in the examples above were given when the agent was not pur-

suing any particular goal. Explicitly situated instructions may also be given while the agent is

learning to perform some procedure. Such instructions indicate a contingency to be followed when

the procedure is performed in a situation different from the current situation. The ability to teach

contingencies allows the instructor to teach the agent about alternative situations, including situa-

tions that may be rare or dangerous, thus overcoming one of the shortcomings of implicitly situated

instructions. Contingency instructions are very common in tutorial discourse; Ford and Thomp-

son [1986] found that 79% of the conditional statements in an instruction manual communicated

contingency options to the student.

Consider this interaction between the agent and the instructor:

> Grasp the blue block.
That's a new one for me. How do I do that?

> If the blue block is metal then grasp the magnet.

The agent is being taught to grasp a block that is not metal. However, the instructor wants the

agent to know that if the block were metal, a different course of action would be required.

The conditional instruction in this example ("If the blue block is metal then grasp the magnet")

is similar to those in the previous section. From this instruction, the agent is expected to learn

an operator proposal rule for grasping the magnet under appropriate conditions. The agent begins

by determining the situation that the "grasp the magnet" instruction is meant to apply to. The
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If the goal isnew-op-48(<block>), and
<block> isa block with material metal, and

<magnet> isa magnet

then propose operator new-op-48(obj ect <magnet>).

Figure 4.6: The operator proposal rule learned from the contingency instruction "If the block is

metal, then grasp the magnet." (now-op-48 is the new operator being learned for

"grasp").

situation consists of the current goal ("Grasp the blue block") and a hypothetical state that is a

variant of the current state, in which the blue block - the block being grasped - has the property

material metal.

Starting from this hypothetical situation, the agent attempts to explain, by forward projection,

how picking up the magnet allows the block to be grasped. If this projection were successful, the

agent would learn a general operator proposal rule in the usual way. However, in this case the agent

is missing much of the knowledge needed to complete the explanation. It does not know the goal

concept of "Grasp" yet, or the rest of the instructions to reach that goal.

Since the instruction being explained is for a contingency, the rest of the instructions that the

agent is given to "Grasp the blue block" may not (and in this case, do not) apply to the contingent

situation, where the block is metal. In the normal grasp sequence, for instance, the agent learns to

close its hand around the grasped object, but when grasping a metal object by using the magnet,

the hand is closed around the magnet.

Since knowledge of how to complete grasping a metal object is needed to explain the contingency

instruction, and the agent does not know when it might learn this missing knowledge, it chooses

to abandon explanation. Instead, it directly induces the knowledge that can be learned from

the contingency instruction (option 1.2 from Table 2.4). By applying the heuristics described in

Section 3.6, the agent induces an operator proposal rule for "Grasp the magnet." In addition to

the conditions generated by the heuristics, all of the conditions indicated in the antecedent of the
instruction are included. Then, these conditions are presented to the instructor for alteration and

verification:

So I'm guessing the conditions for doing "grasp the magnet"

when your goal is "grasp the block" are:
the block is metal

Is that right?

> Right.
What next?

> Move to the yellow table.

Ok. (does so) What next?
> Move above the blue block.

Once the instructor verifies the conditions, the agent learns the operator proposal rule shown in

Figure 4.6. After this learning is completed, since the agent has not yet finished grasping the blue
block, it continues to receive instruction for that task. Further contingencies can be specified to

the agent at any point.

4.1.4 Learning to reject operators

This section describes learning to reject an operator - a type of operator preferential knowledge

in the PSCM. The knowledge to reject an operator is communicated by a negative instruction that

prohibits an action in a situation. Consider this example:
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If a goalis happiness, and
<block> isa block with color green, and

<gripper> isa gripper that isholding <block>

then the statefailstoachieve happiness.

Figure 4.7: The rule for recognizing a failure state, learned from an instruction prohibiting an action

("Never grasp green blocks"), and given no further explanation ("Trust me").

If an operator new-op-48(object <block>) isproposed, and

<block> isa block with color green, and

then rejectoperator new-op-48(object <block>).

Figure 4.8: The operator rejection knowledge learned from an instruction prohibiting action ("Never

grasp green blocks"), and given no further explanation ("Trust me") (new-op-48 is the

operator learned for grasping objects).

> ]lever grasp green blocks.

Why?

(a)> Trustme.
(b) > Green blocks are explosive.

A negativeinstructionisa command that isprohibitedfrom applying to a hypotheticalsituation.

When Instructo-Soarisgiven a negative instruction,itcreatesa hypotheticalsituationin which

the prohibited action might be executed; in this case, a state with a green block that may be

grasped. Since the hypotheticalgoal that thisinstructionappliesto isnot specified,and there is

no currentgoal,the defaulttop levelgoalofhappiness isused. The goal expectation isimmediate

failure; that is,executing the prohibitedaction(grasping the green block) isexpected to lead to

an immediate lack of happiness.

From thishypotheticalsituation,the agent internallysimulatesthe actionofgrasping the green

block,to see ifthere isa negative (unhappy) result.However, an internalforward projectionof

grasp action resultsin what seems likea finestate. According to the agent'sknowledge, itis

still"happy" afterthe green block isgrasped. Thus, the agent cannot understand why the action

isprohibited. The agent deals with the incomplete explanation by asking for more instruction,

guessing that the missing knowledge involvesstateinference.

As in the previous examples, the instructormay declineto give more instruction,by saying (a)

Trust me. In response to this,the agent simply assertsthat the finalstate of the projection,in

which itisholding the green block,must be unhappy. This assertioncauses the agent to learn a

rule,shown in Figure 4.7,that recognizesthe unhappy state.The failureto achievehappiness meets

the goal expectation of immediate failure, completing the explanation of the original negative
instruction. Based on this explanation, the agent learns an operator rejection rule for grasping

green blocks, shown in Figure 4.8.
Alternatively, further instruction may be given to complete the agent's explanation of a negative

instruction.For instance,the agent may be told (b) Green blocks are explosive. From this

instruction,the agent learnsa stateinferencerule:blocks with color green have explosiveness

high. This ruleadds explosiveness high tothe green block that the agent had simulated grasping

in the hypotheticalsituation.The agent knows that touching a highlyexplosiveobject may lead to

an explosion;and that an explosionisa negative(unhappy) result.Thus, the agent concludes that

the finalstateofthe internalprojection,inwhich itisgrasping the green block,isan unhappy state,

learningthe rule shown in Figure 4.9. Reaching thisnegative resultcompletes the explanation of

the originalinstruction,and the agent learnsan operator rejectionrulethat avoidsgrasping objects

with explosiveness high, shown in Figure 4.10.
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If a goalis happiness, and

<obj> has explosiveness high, and

<gripper> isa gripper thatis holding <obj>

then the state failsto achieve happiness.

Figure4.9: The rule for recognizing a failure state, learned from an instruction prohibiting an

action ("Never grasp green blocks"), and given explanatory instruction ("Green blocks

are explosive").

If an operator new-op-48(object <obj>) is proposed, and

<object> has explosiveness high, and

then reject operator new-op-48 (obj • ct <obj >).

Figure4.10: The operator rejection knowledge learned from an instruction prohibiting action

("Never grasp green blocks"), and given explanatory instruction ("Green blocks are

explosive").

Completing the explanation through an explanatory instruction, case (b), allows the agent to

do more general learning than in case (a). The rules from case (b), shown in Figures 4.9 and 4.10,

apply to any explosive object, not only green blocks. If the agent is later told, for instance, that

Blue blocks a.re explosive, it will know to avoid grasping blue blocks:

> Blue blocks are explosive.

Ok. (the agent learns a state inference rule)

> Grasp the blue block.
I cannot grasp the blue block. I know it will fail.

In addition to learning to avoid the specific action of grasping certain objects, the agent has

learned to recognize certain states that fail to reach its goals. These states should be avoided even

if grasping is not explicitly mentioned. For example, consider the following exchange:

> Move above the green block.

Ok. (agent does it)
> Move down.

Ok. (agent does it)
> Close the hand.

Ok. (agent does it)

This is a bad state to be in! (agent opens its hand)

Since the agent does not think about the possible consequences of suggested actions before perform-

ing them, it does not realize before closing its hand around the green block that this action will

lead to a bad state. However, after the action is taken, the rule that recognizes a bad state (from

Figure 4.9) applies. Upon recognizing the bad state, the agent does two things. First, it selects
an operator that will reverse the primary effect of the previous operator. The agent knows how to

reverse primary effects for each of its primitive operators; here, it opens the hand, to get out of

the bad state. Second, the agent takes the opportunity to learn about the operator that led to the

bad state. It does this in its usual way; namely, it internally projects "close the hand," and sees

that it leads to a failed state. From this explanation, the agent learns to reject the operator in the

future when it will lead to the bad state, before performing it. The rule learned here is shown in

Figure 4.11. Now the agent will avoid closing its hand around explosive objects:

> Close the hand. (when directly above the green block)

I cannot close my hand. I know it will fail.
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If an operator close-gripper isproposed, and

<object> has explosiveness high and size small, and

<gripper> isa gripper that is above-xyz <object>)

then r_ect operator close-gripper.

Figure 4.11: Operator rejection knowledge learned when the agent closes its hand around an explo-

sive object, leading to a bad state.

Notice the effect of the situated nature of Instructo-Soar's learning. The agent learns to avoid

operators that lead to a bad state only when they arise in the agent's performance. Because of this,

the agent momentarily arrives in the bad state. Its initial learning about the state is recognitional

rather than predictive. Alternatively, when the agent first realized that (for instance) states where

its gripper is holding an explosive object are to be avoided, it could have done extensive reasoning to

determine every possible known operator that could lead to that state, from every possible previous

state, to learn to reject those operators at the appropriate times. This reasoning would have been

difficult, because of its unsituated nature; the agent would have to reason through a huge number

of possible situations. In addition, whenever new operators were learned, the agent would have to

reason about all the possible situations they could arise in, to learn if they could ever led to a bad

state. Rather than this costly reasoning, Instructo-Soar simply learns what it can from its current

situation. The theory makes the prediction that human learners also initially learn recognitional

knowledge, and may get into bad states before learning to avoid the actions that led to them.

A more viable alternative for avoiding bad states than reasoning about all possible situations

would be to think through (internally project) the effects of every action before taking it, to see if
a bad state will result. This highly cautious execution strategy may be appropriate in dangerous

situations. It is not appropriate in safer situations where the agent is under time pressure to

perform. The agent could choose between more or less cautious execution strategies in different

situations using knowledge (e.g., general domain knowledge, temporal knowledge). This is not

currently implemented in Instructo-Soar.

From instructions that indicate a hypothetical state, then, the agent can learn state inference

knowledge, operators proposal knowledge (based on state conditions, and as contingencies within a

larger procedure) and operator rejection knowledge.

4.2 Learning from hypothetical goals

In addition to hypothetical states, instructions may explicitly specify the goal of the situation

that they are intended to apply to. Within a single instruction, an explicitly specified goal takes

the form of a purpose clause [DiEugenio, 1992], that indicates the purpose (goal) that an action is

meant to achieve. Such instructions have the form "To do X, do Y" (e.g., "To turn on the light,

push the button"). The basic knowledge to be learned from such an instruction is operator proposal

knowledge for doing Y when the goal is to achieve X.

Instructo-Soar deals with purpose clauses by first mapping "do X" and "do Y" to operators, and

then creating a hypothetical situation in which the operator derived from the purpose clause "do X"

is the hypothetical goal. Since no state is specified, the state of the hypothetical situation is taken

to be the current world state. The expectation about achieving the hypothetical goal is initially

assumed to be immediate success; that is, the agent assumes that doing the specified action ("do

Y") will lead to immediate achievement of the purpose clause goal ("X"). In DiEugenio and White's

[1992] terms, the agent assumes that doing Y generates action X. This may be incorrect; doing Y

may be just an initial step towards achieving X. However, in an analysis of instructional texts,

DiEugenio [1992] found that fully 950£ of instructions with purpose clauses expressed generation

(action Y fully achieved action X).
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If the goal is switch-status(object <light>, status on), and

<light> isa light with id lightl and status off, and

<button> isa button with id buttonl that has color red)

then propose operator ne_-op-19(obj oct <button>).

Figure 4.12: Operator proposal knowledge learned from an instruction speci_'ing a hypothetical
goal ("To turn on the light, push the button.") l/ew-op-19 is the operator learned

previously for pushing a button.

4.2.1 Learning operator proposals from hypothetical goals

Once it is built, the hypothetical situation is used as the starting point for an internal forward

projection of Y, to explain how it leads to achievement of X. If this projection succeeds, the agent

learns an operator proposal rule proposing Y.

For instance, consider the instruction:

> To turn on the light, push the red button.

Assume for a moment that the agent knows pushing the button will toggle the light's status (in

actuality the agent must learn this). When given the instruction above, the agent will form a

hypothetical situation with a goal of achieving "turn on the light", a state like the current state,

and an expectation that pushing the red button will cause immediate success at reaching the goal.

When the agent internally projects pushing the button, the light will be toggled on, achieving the

goal. Thus, the explanation of the instruction is successful, causing the operator proposal rule in

Figure 4.12 to be learned.

4.2.2 Learning operator effects knowledge

However, in actuality the agent does not know the effect that pushing the button has on the

light's status. After creating a hypothetical situation from "To turn on the light, push the red

button," it internally projects pushing the button, but because of its lack of knowledge about

the effects pushing the button, the light remains off within the projection. The explanation is

incomplete. The incomplete explanation and the knowledge needed to complete it are shown in

Figure 4.13.
When Instructo-Soar's explanation of a sequence of operators fails, the agent gives up on expla-

nation and induces operator proposal rules for the sequence directly, as described in Section 3.6.

The agent does not try to figure out what missing knowledge is needed to complete the explanation,

because for a sequence of multiple operators, the credit assignment problem of determining what

knowledge is missing is extremely difficult.
However, in this case, the agent is faced with the incomplete explanation of a sequence that

contains only one operator. Because the sequence is only one operator long, and the agent knows

what conditions that operator is supposed to accomplish (the termination conditions of the hypo-

thetical goal to be achieved), the credit assignment problem is straightforward. The agent can make

a good guess at the missing knowledge needed to complete its explanation (option 2.1 from the list

of options for dealing with incomplete explanations, Table 2.4): it heuristically guesses that since

the operator should achieve the hypothetical goal, its effect must be to produce the termination

conditions of that goal. Thus, any termination conditions of the goal that are not met after the

operator is projected are guessed to be effects of the operator that are unknown to the agent.

In this case, the termination condition for "turn on the light" is that the light have status on.

After internally projecting "push the red button", the light's status is still off. Thus, the agent
infers that an effect of "push the red button" must be to change the status of the light from off to

on. This inference is presented to the instructor for verification:

Does this mean that an effect of "push the button" is that
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I: "To turn on the light, push the red button."

Hypothetical situation:

state: o Of light)

i goal (higher operator):
switch-status(light, ON)

L

lk: [ goal=switch-status(light, on), __propese I
[light is off _'"new-op--19(red btn.) ]

(operator proposal)

....... r

_,t I-- I .....

I

lVlX:[ op=new-op--19(red btu), I
LUghtis off .¢_light is on ]

(operator effect)
!Explanation of l

Figure 4.13: An incomplete explanation of an instruction I with a hypothetical goal, and the knowl-

edge MK needed to complete it. iew-op-19 is the operator learned for pushing the
button.

the lightisnow on

Isthat right?

> Yes.

The instructor verifies that pushing the button has the effect of turning on the light. However,

this effect (and effects of operators in general) is conditional on particular features of the state
that hold before the operator is executed. To guess at these conditions, Instructo-Soar uses two

simple heuristics that operate as a very naive causality theory [Pazzani, 1991a] for determining
the causes of the inferred operator effect. The OP-to-G-path heuristic (described in Section 3.6)

includes any features on paths between objects attached to the operator and to the goal. In the

current example, OP-to-G-path notices that the light and the red button are both on the same

table. The goal-eonditlons-unmet heuristic includes each of the goal's termination conditions

that were not met before the instructed operator was projected; this includes negations of each

newly inferred effect of the operator in question. Here, goal-eonditions-unmet adds that the

light is not on before the button is pushed. The result is presented to the instructor for alteration
and verification:

I think that doing push the button causes:

the light to be on

under the following conditions:

the light is not currently on

the light is on the table
the button is on the table

Are those the rightconditions?
> The button must-be red.

I think that doing push the button causes:

the light to be on

under the following conditions:

the light is not currently on

the light is on the table
the button is on the table

the button is red

Are those the right conditions?
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If the operator being pr_eeted is new-op-19(object <button>),and

<light> isa light with status Not on, and is on <table>,and
<button> isa button that has color red, and ison <table>,

then <light> now has status on.

Figure 4.14: A learned operator effect of pushing the red button (new-op-19 is the operator learned

previously for pushing a button).

> Right.

Since the heuristics do not recognize that the specific button being pushed is important, the in-

structor added the condition that the button must be red (pushing the green button has different

effects). Once the instructor verifies the conditions, the agent learns the operator effects rule shown

in Figure 4.14. This rule will apply whenever the agent internally projects pushing the red button.

In learning an operator effect, the agent has extended its basic domain knowledge.

After this effect is learned, the agent again mentally simulates pushing the red button, to explain

the originalinstruction,To turn on the light, push the red button. The newly learnedop-

eratoreffectknowledge causes the lightto come on and the goal to be reached, completing the

explanation.This enables the agent to learnan operator proposal rulethat proposes pushing the

red button when tryingtoturn on the light,likethat shown in Figure 4.12.The agent has acquired

new knowledge at multiple levels;learningan unknown effectof an operator supported learning a

proposal for that operator.

Currently,Instructo-Soarisonly able to learn about operator effectsthrough purpose clause

instructions,as in thisexample. The instructorcannot, for instance,say "When you do X, it

causes Y and Z to happen." This isa limitationof Instructo-Soar'smapping and interaction

capabilities.

What ifthe inferredeffectof pushing the red button was incorrect?For instance,what ifrather

than causing the lightto come on, pushing the button simply activated a switch that could be

thrown to turn on the light?Ifthe instructorrejectsthe inferredeffectas incorrect,Instructo-Soar

realizesits knowledge ittoo incomplete to learn at multiple levels.Thus, the system resortsto

directlylearning the knowledge itcan induce from the instruction(option 1.2 from Table 2.4) -

namely, an operator proposal ruleforpushing the button.

4.2.3 Learning about hidden/inferred operator effects

The operator effectsrulelearned in the previous example (Figure 4.14)appliesonly within the

internalprojectionofthe operator. The rule,which concludes that the lightcomes on when the red

button ispushed, isnot needed when the button isactuallypushed externally,because the agent

can just see that the lightcomes on. In thissection,an example ispresented in which the agent

learns about an unknown effectof an operator, but the effectisnot directlyperceived,and the

agent must learnto recognizeitin actualexecution.

Recallthat the agent does not know about magnetism. The instructorwould liketo teach the

agent to "grasp" metal blocks by usingthe magnet. To understand thiskind of grasping,the agent

must learn about the effectof moving a powered magnet into contactwith a metal object.

To teach the agent about the effectof the magnet, the instructorfirstleads the agent to the

stateshown in Figure 4.15. Here, the robot isholding the magnet above the grey block,which isa

largemetal block,and the magnet ispowered.

Now, the instructortellsthe agent:

> To grasp Che grey block, move the arm down.

As described in the previous sections, the agent forms a hypothetical situation with the goal of

grasping the grey block. Starting from the current state, it forward projects moving the arm
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Figure 4.15: The initial state the agent is placed in for learning about grasping by using a magnet.

The agent is holding the magnet, and the magnet is on.
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If the operator being projected is move-arm(doun),and

<gripper> isa gripper that isabove-xy <block>, and

<gripper> NOT holding <block>, and <gripper> holding <magnet>, and

<magnet> has status on, and
<block> has material metal,

then <gripper> isnow holding <block>.

Figure 4.16: A learned operator effect of moving down when holding a powered magnet above a

metal object.

down, expecting this to achieve the desired grasp. Of course, since the agent does not know about

magnetism, this projection fails to cause the grey block to be grasped. Thus, the agent tries to

infer some unknown effect of moving the arm down that would cause the grasp to be completed

successfully (using the same method as in the previous example):

Does this mean that an effect of lowering the arm is thai:

the gripper is now holding the block
Is lhat correct?

Yes.

I think that doing lower the arm causes:

the gripper to be holding the block

under the following conditions:

the gripper is not holding the block

the gripper is above the block

the gripper is holding the magnet

Are those the right conditions?

> The magnet must-be powered.
...

> The block must-be metal.

I think that doing lower the arm causes:

the gripper to be holding the block

under the following conditions:

the gripper is not holding the block

the gripper is above the block

the gripper is holding the magnet

The magnet is on.
The block is metal.

Are those the right conditions?

> Right.

From thisexchange, the agent learnsa new effectofmoving the arm down. The rulethat islearned

isshown in Figure 4.16. Just as in the example of the previous section,learning thisrule allows

the agent to complete itsexplanation ofhow moving down succeeds at grasping the grey block;it

achieves the termination conditionsfor "grasp",that the object being grasped isnow held. From

thisexplanation,the agent learnsan operator proposal rulefor moving the arm down to grasp a

metal block,shown in Figure 4.17.

Next, the agent isasked to go ahead and grasp the metal block:

> Grasp the grey block.

The proposal rule in Figure 4.17 for moving down that was just learned applies, and the agent
moves its arm down. After the arm is lowered, the state inference rule shown in Figure 4.2 applies

to add the fact that the magnet is now stuck-to the block. However, the agent does not realize

that it is now "holding" the block.
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If the goal is new-op-48(object <block>), and

<block> isa block with material metal, and

<gripper> isa gripper that is NOT holding <block>, and

<gripper> is holdin 8 <masher>, and above-xy <block>

<magnet> isa magnet with status on, and

then propose operator move-arm(down).

Figure4.17: Operator proposal knowledge learned from an instruction specifying a hypothetical

goal ("To grasp the grey block, move down.") lew-op-4B is the operator learned

previously for grasping an object.

If the state has objects <magnet>,<gripper>,and <block>,and

<magnet> isa magnet, thatis stuck-to <block>,and

<gripper> isa gripper that is holding <magnet>, and

<block> isa block,

then <gripper> is holding <block>.

Figure 4.18: A state inference rule that enables the agent to recognize a goal achieving state, for

grasping a metal block.

Next, since success is expected at grasping after the arm is moved down, the termination con-

dition for "grasp" (that the block be held) is tested. The condition does not hold in the current

state, because the agent does not know it is holding the grey block. Although the agent learned to

conclude "holding" when projecting the "move down" operator (the rule in Figure 4.16), this effect

is not directly perceivable in the external world.

Thus, agent must learn to infer that it is holding the block based on other state conditions. It

tries to induce a new state inference rule that will infer the needed goal conditions:

So, can I infer that:

the gripper is holding the block

Is that right?
> Yes.

If the instructor does not verify the inferred property, then the agent will assume that the goal

(grasping the block) is not yet reached and simply ask for more instructions to reach it. In this

case, the inference is correct. However, the agent does not know what state conditions cause the

inferred property to hold. Thus, the instructor is asked:

Why is the gripper holding the block now?

> Because the gripper is holding the magnet and

the magnet is stuck-to the grey block.
Ok.

From this exchange, the agent learns a new state inference rule, shown in Figure 4.18. The rule

allows the agent to recognize that the gripper is "holding" the grey block through use of the magnet.

From instructions that specify hypothetical goals, then, Instructo-Soar can learn operator pro-

posal knowledge, and knowledge of both perceivable and inferred operator effects. The final category

of learning to be discussed is learning of operator comparison knowledge.

4.3 Learning operator comparison knowledge

An operator comparison rule is a type of operator selection knowledge that expresses preference

for one operator over another in a given situation, when both operators have been proposed. This
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If

then

the goal is new-op-48(object <obj>), and

an operator new-op-48 (object <magnet>) is proposed, and

an operator move-to-table(destination <table>) is proposed, and

<obj> has size small, and is on <table>, and

<table> isa table, and

<robot> isa robot that is Not docked-at <table>, and

<gripper> isa gripper that has status open,

prefer operator move-to-table over new-op-48.

Figure 4.19: An operator comparison rule learned for grasping small metal blocks.

type of knowledge allows the agent to avoid impasses that arise because of ties between proposed

operators.
Previously, the agent learned how to grasp small objects by using its hand. While teaching the

agent to grasp, the instructor mentioned a contingency action: if the block being grasped is metal,

the agent should begin by grasping the magnet. The rule learned for this contingency is shown in

Figure 4.6.
What if the agent is asked to grasp a block that is both small and metal? In such a case both

the contingency action - to grasp the magnet - and the regular action for grasping small blocks -

to move to the table the block is sitting on - will be proposed. The agent has no further knowledge

to select between these two options, and reaches an impasse because of the resulting tie.

To resolve this impasse, the agent must learn operator comparison knowledge that prefers one

operator to the other (or, perhaps, a third operator that is better than either of the current choices).

Thus, the agent asks the instructor for help:

> Grasp the yellow block.
These possibilities come to mind:
move to the table

grasp the magnet
What should 1 do ?

> Move to _he yellow table.
Ok.

The instructor indicates the preferred course of action, allowing the agent to learn an operator

comparison rule preferring that option. To learn the rule, the agent recalls how the chosen option

leads to the goal, and based on that explanation, asserts it as the preferred choice. The rule that

results is shown in Figure 4.19.

Alternatively, the instructor could have specified some other action besides the two options

listed. If this happens, the agent first explains the instruction in the usual way, to learn an operator

proposal rule for it; and then learns operator comparison rules like that in Figure 4.19 to prefer the

instructed operator to each of the other proposed possibilities.

Another alternative is that the possible options are equally good choices. The instructor can

indicate this by saying "Choose either one" when asked which option should be followed. From

this instruction, the agent will learn an operator comparison rule like that of Figure 4.19, but

instead of preferring one operator over the other the rule will indicate that they are indifferent.

This knowledge will cause Soar to choose one of the options at random.

Unfortunately, in the current example, after the agent moves to the yellow table, there are again

two possible actions proposed. The next step in grasping a small object is to move the arm above

it. However, the rule that proposes grasping the magnet (Figure 4.6) still applies, proposing again

that the magnet be grasped.

These possibilities come to mind:
move above the block
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grasp the magnet
What should ! do?

> Hove above _che yellow block.
Ok.

From this exchange, the agent learns another operator comparison rule similar to the one in Fig-

ure 4.19. This pattern continues until the final step of grasping the block is completed. Later, when

the agent is again asked to grasp a small metal block, the operator comparison rules learned will

apply to select the preferred method of grasping the block directly without use of the magnet.
There are two weaknesses to the agent's learning of operator comparison knowledge. First,

as this example illustrates, the instructor can be forced to indicate a preference for each step

needed to complete a procedure, rather than simply choosing between overall methods. That is,

the instructor cannot say "Use the method where you grab the block with your hand, instead

of using the magnet." This is because knowledge about each step in a procedure is stored and

accessed independently, as separate proposal rules, rather than grouped together as a method.

This local knowledge organization improves flexibility and reactivity, allowing the agent to combine

steps from different methods as needed based on the current situation. However, a higher level

grouping of steps associated with particular methods - a more global organization - would allow

more reasonable instruction for selecting between methods.
The second weakness is that although the agent uses its explanation technique to explain the

selection the instructor makes, it does not explain why that selection is better than the other possible

choices. When a tie arises, both choices "work" in that they are viable steps toward achieving the

goal. Thus, preferences between them typically take the form of global preferences; e.g., "Prefer

actions that lead to faster/cheaper goal achievement." Such a preference would give the agent a

basis for explaining why one action is preferred over another. The preference is non-local because

applying it requires aggregating information from multiple situations and actions - i.e., adding up

the cost of alternative paths from the current situation to the goal. It is possible to encode such

global control knowledge within the PSCM, but Instructo-Soar's instructional learning technique
currently cannot handle instructions that specify non-local control preferences.

4.4 Conclusion

Instructo-Soar is an implementation of the theory of learning from tutorial instruction described

in Chapter 2. The agent's architecture is the problem space computational model, as embodied by

Soar. To learn from instruction, the agent uses situated explanation.
Instructo-Soar meets each of the requirements for an instructable agent that were specified as

targets for the theory in Chapter 2. These requirements are summarized in Table 4.1. The agent

uses a straightforward approach to the mapping problem, which has not been a major focus of this

research. It provides a more complete solution to the interaction problem than previous systems,

handling both implicitly and each type of explicitly situated instructions, and supporting fully
flexible interaction for action commands. Finally, the agent meets each of the requirements of the

transfer problem for extending incomplete knowledge through instructional learning. The agent is

complete with respect to instructability of its knowledge types, being able to learn all of the types

of knowledge that it uses in task performance from instruction.
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Requirement [Met?[

1. General learning from specific cases x/

2. Fast learning (each task instructed only once) x/

3. Maximal use of prior knowledge _/

4. Incremental learning x/

5. Ability to learn all types of knowledge used in task x/

performance
a. state inference

b. operator proposal

c. operator preferential: rejection
comparison

d. operator effects

e. operator termination

6. Agent-initiated instruction

7. Flexibility of knowledge content

a. full flexibility for action commands

b. others as appropriate

8. Situation flexibility

a. implicitly situated

b. explicitly situated: hypothetical state
hypothetical goal

Where described

Chapters 3-4

Section 3.4

Chapters 3-4

Chapters 3-4

Chapters 3-4

x/ Section 4.1.1

x/ Sections 3.4, 4.1-2

_/ Section 4.1.4

_/ Section 4.3

x/ Sections 4.2.2-3

_/ Section 3.4

_/ Chapters 3-4

Chapters 3-4

Chapter 3

_/ Chapter 4

_/ Chapters 3-4

Chapter 3

_/ Section 4.1

x/ Section 4.2

Table 4.1: The target requirements for a tutorable agent that are met by Instructo-Soar.



Chapter 5

Cognitive Properties

This chapter examines Instructo-Soar and the theory of instructional learning that underlies it

from a cognitive perspective. It focuses on the behavioral properties and predictions that result
when Instructo-Soar is viewed as a potential cognitive model for the task of learning procedures

from tutorial instruction. Instructo-Soar's development has been strongly influenced by the PSCM

and by Soar. Soar has been put forward as a candidate unified theory of cognition (UTC) [Newell,

1990]; thus, one key issue to examine is what kind of impact this unified theory has had on the

model's development. Does the use of a unified theory provide positive constraint to the cognitive

modeler? The chapter analyzes Soar's effect on the Instructo-Soar model, and in so doing, develops

a general methodology for analyzing and comparing individual microtheories that have been created

within unified theories of cognition. 1

Specifically, the chapter addresses the following issues:

• What are the behavioral properties of Instructo-Soar as a model of learning procedures from
instruction?

How did Instructo-Soar's development within a unified theory of cognition (Soar) provide

constraint to give rise to these behavioral properties? That is, what impact does being within
Soar have on the model?

• What predictions about human behavior result from the properties of the model?

• How do these predictions compare to what is known of human behavior?

• How does the model compare to other cognitive models of similar tasks? To models developed

in other unified theories of cognition?

Viewed as a cognitive model, Instructo-Soar makes a number of testable predictions about

human learning, although the agent's performance does not cover the full range of interaction that

occurs in real human tutorial learning. Unfortunately, there is not a great amount of data on

the detailed course of human learning during tutorial instruction; most instructional research has

focussed on macro-issues like the overall effectiveness of different instructional strategies. However,

Instructo-Soar's behavioral predictions are found to be broadly consistent with that is known of

human behavior. The analysis of Soar's impact on Instructo-Soar indicates that the properties of

Soar have a large influence on properties and predictions of the model, showing how the use of a

UTC can provide constraint in model building.

1 This methodology for UTC-based rnicrotheory analysis was developed with Craig Miller and John Laird [Huff'man

e_ al., 1993a].
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5.1 Instructo-Soar as a model of procedural learning from tutorial in-

struction

To focus the discussion, only the central functionality of Instructo-Soar will be examined as a
cognitive model: the learning of new procedures from situated interactive instructions, described
in Chapter 3. To recap the performance: Instructo-Soar exhibits two stages of learning behavior in

learning a new procedure. Initial learning is rote and episodic in nature, and exhibits low transfer.
Later executions result in high transfer, general learning, based on situated explanation of each
instruction. That is, whenever the agent is given an instruction (or recalls one it was given in

the past), it attempts to explain to itself why that instruction leads to achievement of its current
goals. This explanation takes the form of an internal forward projection of the instructed action
- the agent asks "What would happen if I did that?" If this projection results in successful goal
achievement (or in failure if the instruction is to avoid an action), then Instructo-Soar learns a

general rule capturing the key conditions under which the instructed action applies. A similar
"learning by (simulated) doing" process applies when the agent is given an instruction that applies
in a hypothetical situation; the agent first creates a hypothetical context, and then projects the
instructed action, attempting to understand why it leads to achieving the agent's goals.

The main focus of research on Instructo-Soar has been on the transfer problem; that is, on the

process of learning when given instruction. Thus, the primary behavioral properties of Instructo-
Soar that will be examined here are its learning properties. The work has also addressed the

interaction problem, providing a large amount of flexibility in interaction as described in the previous

chapters. However, all interaction is driven by the agent's lacks of knowledge; whenever the agent
does not know what to do next, it asks for help. Agent-initiated interaction is a poor approximation
to the interaction between a human instructor and student, in which both parties initiate a variety of

kinds of instruction events. One study has shown that teacher-initiated instruction dominates early

in learning, with student initiation increasing later [Emihovich and Miller, 1988]. Instructo-Soar
does not attempt to model this pattern of interaction.

There are five major behavioral properties of Instructo-Soar's procedural learning:

1. Interactive instruction requests. The agent asks for instruction as needed.

2. Initial episodic learning. The initial learning of a procedure is rote and episodic.

3. Experiential, situated learning method. The agent employs a situated "learning by

(simulated) doing" method to produce explanations that lead to general learning.

4. Final general learning. The final form of a learned procedure is general and automatic,
with each step directly conditional on features of the current situation.

5. Monotonically increasing task knowledge. As the agent receives more and more instruc-
tion, its task knowledge continues to increase; there is no structural limit to the amount of

knowledge that can be learned.

Each of these properties will be described in greater detail later in the chapter, when the effect
of Soar on each is analyzed. The next section examines the use of unified theories of cognition in
developing theories of specific behavior, laying the groundwork for this analysis.

5.2 Cognitive modeling within unified theories of cognition

One of the primary problems to be faced when building a cognitive model is the underconstraint
of the model by the behavioral data. There are a multitude of design decisions that must be made in
building a model, and the data does not completely constrain those decisions. Thus, many models
can account for the same data.

A recurring theme of research on Soar, and prior research of Allen Newell's, has been the useful
constraint that a unified theory of cognition (UTC) offers in designing cognitive models [Newell,
1990; Newell, 1973]. A UTC, as embodied in the form of an architecture, posits a set of mechanisms
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capable of supporting intelligent behavior. By constructing a model within a UTC, we restrict

ourselves to designs consistent with the architecture's properties. This constraint is useful because

it produces models based on principles that are globally motivated by a broad range of cognitive

behavior and phenomena. Since models are based on a consistent set of underlying mechanisms,

modeling within a UTC also facilitates the integration of models to cover a larger range of behavior.

The constraint provided by a UTC is most evident for tasks at low timescales. For these tasks,

behavior is strongly determined by the architecture itself. This is because there is not enough

time for more than a small number of applications of the architecture's primitive mechanisms.

However, as the timescale increases, to the level of minutes or hours for task performance, behavior

is determined more and more by an intelligent agent's knowledge. This is Newell's intendedly

rational band [Newell, 1990], in which the agent moves towards approximating a pure knowledge-

level system. Learning from instruction falls into this band, because performance is dominated

by knowledge, and takes on the order of minutes to hours. The large timescale allows the agent

to retrieve, compose, and apply relevant knowledge to reach its goals. Because of the distance in

time.scales between knowledge level behavior and an arehitecture's primitive mechanisms, it is less

evident how a UTC might constrain the design of models for behavior at these higher timescales.

Thus, a key question to be addressed is, "What constraints, if any, does a UTC offer in designing

a model of knowledge level behavior?"

The sections that follow present an analysis of the effect of a particular UTC, Soar, on a par-

ticular model of knowledge level behavior, Instructo-Soar. The analysis demonstrates a general

methodology for analyzing the effect of a UTC, that utilizes architectural entailments derived from
the architecture's basic mechanisms and properties. A UTC's entailments can powerfully guide the

development of a model of knowledge level behavior. The analysis shows that each of the behav-

ioral properties of the Instrueto-Soar model mentioned above is affected by different architectural
entailments of Soar.

5.3 Soar's architectural entailments

Architectural entailments are ramifications of the combined architectural components that de-

fine the UTC, that provide a level of description of an architecture above the level of the basic

components. Examples of architectural entailments include whether or not the architecture's be-

havior is goal oriented, interrupt driven, based on a particular weak method, etc. Since they are at

a higher level, entailments are more useful than the basic architectural properties for determining

the architecture's effect on large timescale behavior.

Entailments provide constraint in designing knowledge level models because they determine

which techniques, structures, etc., are most "natural" within the architecture. Models that are

most afforded by the entailments are preferred. As Newell puts it: "There are many ways for

Soar to...do any [intendedly rational] task. A natural way is one that involves little additional

knowledge and little computational apparatus and indirection...One of the general arguments for

the importance of getting the architecture right, even though it appears to recede as the time scale

increases, is that doing what is natural within the architecture will tend to be the way humans

actually do a task." [Newell, 1990, p. 416-17]
A UTC's entailments derive from its basic properties.

5.3.1 Basic properties of Soar

Following Newell [1990, p. 160], Soar can be described as having six basic properties:

1. Problem spaces represent all tasks. Soar follows the problem space computational model,

with the basic computational structures of states and operators organized in problem spaces.

2. Productions for long-term memory. All long-term knowledge is stored in associative pro-

ductions, including search control, operator application knowledge, and semantic and episodic

knowledge.
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Figure 5.1: How the entailments of Soar arise and affect the Instructo-Soar model.

3. Attribute/value representation. All declarative structures in working memory are repre-

sented as objects with sets of attributes and associated values.

. Preference-based decision procedure. Productions produce symbolic preferences for

working memory elements, including problem spaces, states, operators, and substructures of

these objects. The decision procedure interprets the preferences to select appropriate values

for working memory.

5. Impasse-based automatic subgoaling. Subgoals are created automatically in response to

the inability to make progress on a problem.

, Chunking based learning. Chunking produces a new production whenever a result is

created during processing in a subgoal. The new production, or chunk, summarizes the result

of processing within the subgoal; in future executions of related tasks, chunks will fire, avoiding

the subgoal.

5.3.2 Entailments of Soar

Starting from Newell's characterization of Soar [1990, pp. 227-30], a list of Soar's entailments has

been generated based on its basic properties. The entailments are broken down into four categories:
behavior, knowledge, long-term memory, and learning. The list is not intended to be exhaustive,

but includes the key entailments that affect Instructo-Soar, as described in the next section. Each

entailment derives from some combination of the basic properties of Soar, as indicated by numbers

(from the list of Soar's properties above) in brackets after each entry in the list below. These
dependencies are shown graphically by the first two columns of Figure 5.1.

• Behavior.
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1. Goal oriented. Soar creates its own goals whenever it does not know how to proceed

[1,5].

2. Interrupt driven. All productions are being matched continuously, and bring to bear

whatever knowledge is appropriate to the current situation. The preference-based deci-

sion process allows knowledge to indicate that a more important course of action than

the current course should be followed. Subgoals based on the old course of action are

terminated when an alternative course of action is selected. [2,4,5].

3. Serial application of discrete, deliberate operators. A single operator is selected and

applied at a time within each goal context. [1,4]

4. Continual shift to recognitional (impasse-free) performance. Whenever an impasse is

resolved, chunks are learned that allow the impasse to be avoided in the future. These

chunks implement recognitional performance - they simply recognize the situation and

act appropriately, without requiring further deliberation (i.e. subgoals). [5,6]

• Knowledge.

5. All knowledge is related to problem-space structures: problem spaces, states, and oper-

ators. [1]

6. Use of an indefinitely large body of knowledge. Soar can use large amounts of knowledge

because of the structuring of knowledge as individual productions, and the factoring of

that knowledge into multiple problem spaces. [1,2]

7. Ability to detect a lack of knowledge. Impasses are detected architecturally, and indicate

a lack of knowledge to make a decision. [4,5]

• Long-term memory.

8. Associative, recognitional long-term memory. Productions form an associative long-term

memory. Knowledge is recalled only when appropriate retrieval cues appear in working

memory. [2]

9. Impenetrable long-term memory. The productions in long-term memory cannot be ex-

amined by the agent, for instance by being tested by other productions. Thus, the agent

is not fully aware of what is in its long-term memory; access is gained only through

working memory retrieval cues. [2]

• Learning.

10. Learning determined by performance. The chunks that are learned are directly dependent

on the processing that takes place in a subgoal to produce a result. In particular,

the generality (transferability) of chunks is dependent on the generality of the problem

solving in the subgoal. [5,6]

11. Learning based on prior knowledge. Since learning is dependent on performance, and

performance is dependent on the agent's existing knowledge, it follows that what is

learned depends critically on the agent's preexisting knowledge. [5,6]

12. Impenetrable learning process. The chunking process is impenetrable to the agent; it
cannot learn to alter its architectural learning process. 2 [6]

13. Monotonic learning. Productions are never removed from long-term memory; once

learned, chunks cannot be forgotten. This contrasts with work in machine learning

involving deliberate forgetting mechanisms (e.g., [Markovitch and Scott, 1988; Salgani-

coff, 1993]). However, the effects of a chunk can be overridden by other chunks to recover

from incorrect learning [Laird, 1988]. [2,4,6]

_However, since learning is dependent on performance and knowledge, chunking can form the basis for many

different learning strategies (e.g., induction, analogical learning, abstraction, etc.). These strategies are essentially

knowledge-level behaviors that are mediated by knowledge and can be learned.
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If the operator is resolve(<referent>), and

the discourse segment is segmentl3, and
<referent> isa move-act,

then <referent> is recognized as having id i943.

Figure 5.2: A recognitional chunk that encodes an episodic memory of one semantic feature of an
instruction.

14. Routine learning. Chunking is part of the routine performance of the agent, rather

than a special process that is deliberately invoked. The decision to learn is not under

the agent's control (except indirectly as the agent decides when to return results from

subgoals). [5,6]

5.4 Soar's impact on Instructo-Soar

In this section, each of the major behavioral properties of the Instructo-Soar model is examined

in more detail. Each model property is affected by a variety of Soar's architectural entailments,

revealing the constraining effect of developing the model within Soar.

5.4.1 Interactive instruction requests.

The agent asks for instruction whenever its available knowledge is insufficient to reach its goals.
It can do this because it is goal oriented (entailment 1), and can detect its lack of knowledge

(entailment 7).

5.4.2 Initial episodic learning.

As a side effect of natural language comprehension when reading the instructions for a new

procedure, the agent learns a set of chunks which provides an episodic memory of the instructions.

This memory has the following characteristics:

Long term memory. The episode is encoded as a set of productions in Soar's long term

memory (entailment 8). Thus, instruction sequences are remembered without an unrealistic
load on short term memory, and instructions are not forgotten (entailment 13).

Recognitional memory; effortful reconstruction for recall. The episode is encoded as

a set of recognition rules, in which the features of the instruction to be recalled make up the

conditions, rather than the actions, of each chunk. An example of an episodic recognition

rule is shown in Figure 5.2. The rule tests a discourse segment symbol (segmentl3); a new

discourse segment symbol is created each time the agent begins to receive instructions toward

a new goal. The rule recognizes isa move-ac_ as a semantic feature of an instruction that was

given within segtaentl3. Recognition is the basic form of long-term memory (entailment 8),

and processing impasses results in recognitional learning (entailment 4); here as a side-effect of

natural language comprehension (entailment 14). The chunks are recognitional because their

conditions are dependent on the behavior in the subgoal they are produced from (entailment

10); and in this case, the behavior (language comprehension referent resolution) is dependent
on the semantic features of the instruction.

To recall parts of the instruction episode, the agent must deliberately reconstruct features of

the episode, which are then recognized by these rules. This is because the agent cannot simply

inspect the contents of long-term memory (entailment 9); it must be accessed by placing the

appropriate recall cues in working memory.
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High Specificity. Each instruction is indexed by the exact goal it applies to (e.g., picking
up the red block blk-r); similarly, the exact instruction given is remembered (e.g., moving

to the yellow table gbl-y). The specificity results from learning based on performance (en-

tailment 10); here, the performance (referent resolution) involves reference to specific features

of the goal and the instruction. The specificity is required to avoid confusion between dif-

ferent referents associated with different goals (which are associated with specific discourse

segments).

Factored representation. There are separate recognition chunks for each semantic feature

of each instruction, as illustrated by the chunk in Figure 5.2. The chunks are learned for the

purpose of resolving future natural language referents, and this requires independent access

to each feature (e.g., after reading "the red block", you may read "the red one" and need to

recover the referent from only its color feature). Independent access requires a set of individual

feature chunks because long-term memory cannot be examined (entailment 9); thus, the agent

cannot simply memorize a monolithic semantic structure.

Lock-step sequencing. Instructions are sequenced by being chained one to the next, instead

of indexed directly by the situations they should apply in. Learning is performance based

(entailment 10), and the performance of reading the instructions (which produces the episodic

memory) does not depend on what situations the instructions will apply to during performance
of the actual task.

5.4.3 Experiential, situated learning method.

By internally projecting instructed actions, the agent learns general rules that propose the ac-

tions directly when they will allow a goal to be reached. This experiential learning method is

afforded because learning is based on performance (entailment 10) and is impacted by prior knowl-

edge (entailment 11). Thus the "natural" way for a Soar system to learn about task performance

is to perform the task itself (thereby making maximal use of the task domain knowledge it already

has) - here, internally, in case the task cannot be completed. There are alternatives; for example,

reasoning directly in the space of possible condition sets about the conditions under which each

instruction might apply. However, any such method would require adding additional knowledge to

Soar (about conditions, condition sets, how to search that space, etc.). In addition, it would be
difficult to learn chunks with exactly the desired conditions, since the chunking process is impene-

trable (entailment 12) - an agent cannot simply say "now I'll add a chunk to my memory with the
following conditions and actions."

5.4.4 Final general learning.

The experiential, situated learning method allows Instructo-Soar to learn procedures in a general

form that has the following characteristics:

Long term memory. Rules implementing a procedure are encoded as productions (entail-

ment 8).

Operator-based organization. Actions and procedures are encoded as individual oper-

ators; the agent learns when to select these operators, how to achieve them, and how to

recognize their achievement (entailments 3 and 6).

Situation conditionality. Each operator proposal rule is directly conditional on relevant

features of the current situation (state and goal being pursued) of the agent. This is because

learning is determined by performance (entailment 10); here, the performance is an internal

projection of the instructed operator from a particular state to achieve a particular goal.

The implementation displays reactivity, since if the world state unexpectedly changes, rules

proposing the next operator to perform will match or mismatch accordingly (entailment 2).
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Generality. The features in each proposal rule are only those required for successfully reach-

ing the goal. This is because learning is determined by performance (entailment I0) - here,

goal achievement - and prior knowledge (entailment 11) - here, knowledge of how to simulate
the basic operators.

Automaticity. The learned rules move the system to recognitional performance (entailment

4). No effort is required to recall instructed operators in the appropriate situation, as it is for

the initial rote learning.

5.4.5 Monotonically increasing task knowledge

There is no structural limit on the amount of task knowledge the agent can acquire from instruc-

tion (entailment 6). No forgetting or symbol-level interference will occur; that is, the learning of new

productions will not overwrite old ones (entailment 13). Interference may occur at the knowledge

level, if productions bring conflicting knowledge to bear on the task. This indicates that there is

an actual conflict in the agent's knowledge (e.g., perhaps the instructor has given instructions that

conflict or overlap). In cases where conflicting operators are proposed, Instructo-Soar can learn to

resolve the conflict by taking further instruction, as demonstrated in Section 4.3.

5.4.6 Analyzing Soar's effect

Figure 5.1 summarizes the relationship between the properties of Soar, the entailments they

give rise to, and properties of the Instructo-Soar model. In essence, this figure factors the effects

of each UTC property and entailment on the model. It gives a detailed answer to the question of

how the use of the UTC impacted the model. 3

The figure can be used to determine how each model property is influenced by the properties

and entailments of the UTC. As an example, Figure 5.3 indicates which UTC properties influence

the Instructo-Soar property that initial episodic learning requires an effortful reconstruction to be

recalled. As the figure shows, a number of Soar's entailments and properties influence this model

property, indicating that a large amount of constraint was provided by the architecture.

Going the other direction, the figure indicates what effect each property of the architecture has

on the model. This can show which architectural properties have a large effect and which have no

effect (provide no constraint). For instance, Figure 5.4 traces the effect of Soar's production based,

recognitional form of long-term memory, which has a large impact on Instructo-Soar. On the other

hand, the fact that Soar uses an attribute/value based representation has no effect. Such analyses

can be useful in determining how the properties of a model might change if the architecture were

changed in various ways.

Entailments provide an intermediate level of granularity that can be used to compare models

within different unified theories. Where another arehitecture's entailments differ from Soar's, a

figure like Figure 5.1 indicates the model properties that will be affected by the differing entail-

ments. For instance, ACT* [Anderson, 1983] has a declarative long-term memory in addition to a

production memory. This entails a fully penetrable, non-associative memory, that could be used to

store instructions as they are read. From our analysis, the associative and impenetrable nature of

Soar's long-term memory affects Instructo-Soar's form of initial, episodic learning in three ways: (1)

the episode is in long-term memory, (2) it requires reconstruction for recall, and (3) it is encoded

in multiple productions that factor the instruction features. In an ACT* based model of learning

procedures from instruction, (1) the episode could still be in long-term memory, but now in declar-

ative memory, (2) no reconstruction would be required for recall, but rather a search of declarative

memory, and (3) the representation would not be factored into separate associative pieces; rather,

°The methodology used to construct this figure is somewhat similar to VanLehn's [1990] analysis of the assump-

tions in his SIERRA theory of procedural learning. A UTC's basic properties are like VanLehn's "assumptions"

and its entailments are like his "theorems" (which are derived from the assumptions). A competitive argument

can be made for the various mode] properties based on the entailments. However, VanLehn's goal is to understand

the dependencies between assumptions in his theory and to argue for those assumptions, while the goal here is to

understand the impact of a particular set of assumptions (a unified theory) on a resulting model.
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Figure 5.3: The properties and entailments of Soar that influence Instructo-Soar's property that
initial episodic learning requires an effortful reconstruction to be recalled.
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Figure 5.4: The effect of Soar's recognitional long-term memory on Instructo-Soar.

any feature could be retrieved from a declarative structure. These properties are indeed found
in an ACT* model of procedural learning from instruction [Anderson, 1983]. This model will be
contrasted further with Instructo-Soar after a discussion of Instructo-Soar's behavioral predictions.

5.5 Model predictions

Thus far, the Instructo-Soar model's properties have been described in terms dependent on
the model's data structures and processes. However, in order to evaluate the model as a testable

hypothesis, behavioral predictions must be described independent of the model and architecture.

The model's predictions are determined by its behavioral properties. Determining predictions based

on behavioral properties is a step that must be taken in any cognitive modeling effort, whether based

on a unified theory or not.

Instructo-Soar makes a number of testable predictions. Some predictions are dependent on

the recall strategy used to recall episodic memories of past instructions (described in Chapter 3).

Except where otherwise noted, the "single recall" strategy will be assumed.

• Initial learning of a new procedure is rote and episodic. Thus:

(1). The procedure can initially be performed only in situations very similar to the original

situation it was taught in (low transfer). This is because of the high specificity of the

rote memory.

(2). Subjects will initially have difficulty performing the procedure starting from any state
other than the original initial state (i.e. they can't start the procedure in the middle

very well). This is because the rote memory is highly specific, and is sequenced in a

lock-step fashion.
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(3). Performance is initially slow. This is because the effortful reconstruction required to
recall instructions from long-term memory takes time; the factored representation of the

episode requires that each feature be reconstructed, and the results assembled, for a
complete recall.

• General learning of a new procedure does not occur immediately, but takes multiple executions

of the procedure. Thus:

(4). The amount of transfer - the ability to perform the procedure in novel situations -
increases with the number of executions, until the maximum transfer level is reached.
This is because learning occurs through an experiential process.

(5). The execution time decreases with the number of executions until the maximum transfer
level is reached. This is because parts of the procedure that must be recalled from episodic

memory require a time-consuming reconstruction process, whereas parts of the procedure
that have been learned generally apply directly without a recall process. Thus, as more
and more of the procedure is learned in general form, execution time drops. Empirically,
this execution time decrease displays the power law of practice, as shown in Figure 3.9.

(6). Procedures taught hierarchically will be learned faster and more effectively (as described
in Chapter 3). Faster learning of hierarchies is a consequence of (5) - when a procedure is
broken into a hierarchy of subtasks, each has fewer substeps than the overall procedure,

and learning and execution time are proportional to the number of substeps. More
effective learning of hierarchies is a consequence of learning by a situated explanation
process; the shorter explanations required for each subtask are less susceptible to errors
in prior knowledge.

• After some number of executions, the procedure is fully generalized. At this point:

(7). Performance is automatic, occurring recognitionally; thus, performance is rapid. Sub-
jects' knowledge of what action to perform next is retrieved directly from long-term
memory based on current situational features.

(8). Subjects will exhibit the Einsteilung effect [Luchins, 1942]; that is, once a method is
learned for a particular task, that method will continue to be used even if a more efficient
method is available. This is because after general learning, performance is automatic and

recognitional.

(9). Subjects will be able to execute the procedure equally well starting from any of the
intermediate states along the path of the instructed action sequence. This is because
the steps are operators indexed by current state conditions, rather than sequenced in a
lock-step fashion, or stored as a monolithic plan.

• General learning is the result of an experiential, situated learning method. The method
involves a deliberate recall and explanation process, applied to each individual instruction,

using prior domain knowledge (e.g., knowledge of basic operators' effects). Thus:

(10). Self-explanation [Chiet ai., 1989] by subjects improves transfer. Subjects who do not
attempt such explanations will achieve only low transfer learning (rote learning); subjects
who successfully self-explain will achieve high transfer, general learning.

(11). Self-explanation improves performance time, because performance time is lower after
general learning ((6), above).

(12). (Alternative recall strategies:) Because recall and explanation of instructions is an ef-
fortful, time-consuming process, when pressured to act quickly subjects may not have
time to recall and explain an entire instruction sequence at once. Thus, under more time
pressure, the number of executions of a procedure to achieve high transfer learning will

increase (moving towards the single recall strategy). Under less time pressure, or when
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encouraged to introspect about their behavior, subjects will achieve high transfer learn-

ing more quickly (moving towards the introspective recall strategy). However, ahhough

it models different recall strategies, Instructo-Soar does not explicitly model subjects'

switching between them.

(13). Because of the explanation-based nature of the learning process, the amount and quality
of transfer achieved depends on the amount and quality of prior domain knowledge of

the subject - subjects with less domain knowledge will achieve less transfer.

(14). Unsituated instruction - instruction that does not clearly apply to a particular situation

(either the current situation or a specified hypothetical one) - will be more difficult for

subjects to learn from than situated instruction. This is because of the situated nature

of the learning process.

• Task knowledge monotonically increases with learning from instruction. There is no structural
limit on the amount that can be learned. Thus:

(15). Once learned, non-conflicting task knowledge will not be forgotten by subjects either
because of disuse or other unrelated learning. (As all knowledge has associated recall

cues, however, recall of a piece of knowledge may fail because the proper cues cannot be

generated.)

Figure 5.5 shows these predictions and indicates the behavioral properties each arises from.

5.6 Comparison to human performance

As mentioned previously, there is little specific data on human learning and transfer during
the course of tutorial instruction. The kind of data needed to test Instructo-Soar's predictions

would include detailed timing data within and across executions of a new task, and carefully col-

lected transfer data between executions; experiments would also have to control for subjects' prior

knowledge. No detailed fit of Instructo-Soar to specific data has been attempted.

However, Instructo-Soar's predictions and properties appear to be broadly consistent with what

is known about human performance. Four general human learning effects that are consistent with
the Instructo-Soar model are the role of situatedness, the effect of prior knowledge, the effect of

self-explanation, and the ability to transfer learned knowledge. In the rest of this section, each of

these will be discussed in turn.

5.6.1 Situated learning

There is a growing recognition that situated learning - learning that results from performing

or participating in performance of tasks in actual task situations - is highly effective [Vera et al.,
1993; Lave and Wenger, 1991; Brown et al., 1989; Emihovich and Miller, 1988]. Knowledge is only

useful to the extent that it can be applied correctly in particular situations [Singley and Anderson,

1989; Chi et al., 1989]; and it appears that people learn to apply knowledge within situations by

performing tasks in those situations. This idea underlies the increase in training through computer

simulated practice (e.g., pilot training) [Lintern, 1991].

Actually performing procedural instructions produces different memory effects than simply

memorizing them as text [Kintsch, 1986]. In fact, students seem to prefer instructions that can be

performed to achieve a particular task over more general, unsituated instruction. As Carroll [1984]
observes, students "don't appreciate overviews, reviews, and previews; they want to do things."

This preference is so strong that "they are apt to plunge into a procedure as soon as it is mentioned

or will try to execute purely expository descriptions" [Carroll, 1984, p. 125]. Carroll's studies have

shown that training that leads students through execution of actual tasks is more effective than

other kinds of training.

Instructo-Soar predicts the effectiveness of situated learning because its central learning pro-

cess is situated explanation. Situated explanation requires that the agent understand what goal
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Figure 5.5: Instructo-Soar's behavioral predictions, as they arise from its behavioral properties.
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andstate(situation)aninstructionappliesto, before it can learn generally from the instruction.
Instructo-Soar predicts an advantage for hierarchical instruction because it breaks a procedure into

smaller intermediate goals that are easier to explain. Hierarchical instruction that provides informa-

tion about intermediate goals has been shown to be more effective than purely linear step-by-step

instruction [Smith and Goodman, 1984; Konoske and Ellis, 1986]. Goal information also helps

students interpret commands correctly [Dixon, 1987]; this is a part of the mapping problem that is

not modeled by Instructo-Soar.

Instructo-Soar uses a situated learning process even for instructions that apply to a situation

different from the current situation. To learn from explicitly situated instructions like conditionals,

it creates an appropriate internal situation and simulates performance of the instruction. This is

similar to other models of interpreting conditionals, such as Johnson-Laird's [1986].

5.6.2 Prior knowledge

Psychological studies have shown that subjects' prior domain knowledge affects their ability to

both interpret and learn from instructions. Instructo-Soar does not focus on interpretation (the

mapping problem). On the other hand, general learning in Instructo-Soar depends strongly on the

agent's prior domain knowledge. If domain knowledge is lacking or of low quality, the learning will

degrade, falling back on naive heuristics or simply rote learning. This is a good match to observed
human behavior.

Instruction interpretation: Instructo-Soar's simple approach to the mapping problem does not

model these effects, but they are mentioned for completeness. Dixon et al. [1988] gave subjects

instructions with key actions stated either explicitly or implicitly, as a part of another step. They

found that readers with a high amount of background knowledge were less effected by the implicit

form than those with low background knowledge. Mohammed and Swales [1984] tested subjects

who were either native or non-native speakers, with either a science or non-science background,

in following instructions to set the time and alarm on a digital clock. Non-native speakers with a

science background performed better than native speakers without a science background. In both

of these studies, subjects with prior knowledge may have made up for incomplete comprehension of

the instructions by inferring the missing steps, whereas low knowledge subjects could not do this

[Bovair and Kieras, 1991].

Learning and transfer: Prior domain knowledge has been shown to improve students' instruc-

tional learning and transfer. Judd [1908] had two groups of boys throw darts at underwater targets.

One group, taught about refraction beforehand, outperformed the other after the basic mechanics

of the task were mastered. More recently, Kieras and Bovair [1984] taught subjects procedures

for operating an unknown device (a Star-Trek like control panel). Subjects given prior instruc-

tion about the device's inner workings (a domain theory for the device) learned the procedures

more effectively, in terms of speed and accuracy of performance, and retention of the procedures.

Churchill and Young [1991] built a simple production based model of these results, that produces

rote, strictly ordered rules from instruction without prior device knowledge, and more general,
situated rules when it has prior device knowledge. In Instructo-Soar, the generality, accuracy,

and execution time of knowledge that is learned are all strongly dependent on the agent's prior

knowledge.

5.6.3 Self-explanation

Chi el al. [1989] took protocols of subjects studying worked out examples of physics prob-

lems, and then measured the subjects' performance on a test containing similar problems. They

found that subjects who performed well on the test problems had produced significantly more self-

explanations while studying the examples. These self-explanations involved a deliberate, conscious

effort to justify the steps in the example, by explicating consequences and preconditions of actions

[Chi and VanLehn, 1991]. Students formed explanations of individual steps in each example, rather

than explaining multiple steps [VanLehn et al., 1992]. Poor students did not self-explain but rather

processed the examples in a verbatim fashion.
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During problem solving, good solvers (those who self-explained the examples) referred to exam-

pies sparingly, and in a targeted fashion, looking for specific information (e.g., a specific equation).
Poor solvers, on the other hand, used the examples extensively as syntactic templates. Based on

surface features, they would try (often inappropriately) to apply actions taken in an example prob-

lem to their current problem. This rote use of the examples did not work very well, and resulted

in low transfer. VanLehn et al. [1992] present a detailed model of these effects, called CASCADE,

that is able to successfully reproduce the performance of individual subjects.
These results are relevant because Instructo-Soar employs a self-explanation approach to learning

from tutorial instruction. Instructions are explained in a line-by-line manner to "justify" each

instructed action, based on an internal projection that elucidates its effects. Although example

problems are a somewhat different form of instruction than tutorial instruction, Instructo-Soar's

predictions are similar to the self-explanation findings. If Instructo-Soar does not attempt to explain

instructions, its learning will degrade to rote learning. This rotely learned knowledge could be

applied analogically to future problems based on surface similarity, just as the poor students in

the self-explanation studies used the examples (although this is not implemented in Instructo-

Soar). However, only by successfully self-explaining an instruction is high transfer, general learning
achieved. This is resonant with Chi and VanLehn's [1991] conclusion:

Our data suggest that students can learn, with understanding, from a single or a few ex-

amples...However, only those students who provide adequate explanations during study-

ing are able to see the degree to which they can generalize...Our results suggest that
unless the student self-explains from examples, there is little opportunity for transfer

[Chi and VanLehn, 1991, p. 101].

Instructo-Soar's self-explanations take the form of mental simulations of instructed actions.

There is ample evidence that this type of "mental practice" results in useful learning for human

subjects [Annett, 1991]. Feltz and Landers [1983] and Johnson [1982] found evidence that mental

practice causes rehearsal of cognitive processes (as in Instructo-Soar), not only low-level motor

responses.

5.6.4 Transfer

Other than the self-explanation effect, two other general transfer effects are found in Instructo-

Soar's behavior. First, over multiple executions, the execution time of a procedure being learned

follows the power law of practice [Rosenbloom and Newell, 1986]. This is a within-task positive

transfer. Second, once learned generally, an inefficient procedure will exhibit the Einstellung effect;
it will be difficult to learn a more efficient procedure. This is negative transfer.

Instructo-Soar, and Soar in general, is one of a class of theories that explain transfer by a mod-

ernized version of Thorndike's [1903] transfer of identical elements theory [Singley and Anderson,

1989; Gray and Orasanu, 1987]. The shortcoming of Thorndike's original formulation is that the

identical elements were highly specific stimulus-response rules. In the modernized versions, these

overly specific rules have been replaced by more general associative constructs, such as productions.
Transfer occurs when productions that are used during one task also apply to another task. Since

productions can be very general, transfer can occur across disparate tasks. However, the majority of

productions for any particular task will be quite specific. Likewise, most results on transfer indicate

that it is very narrow [Singley and Anderson, 1989; Bovair and Kieras, 1991]. For instance, Foltz et

al. [1988] found that simply changing the name of a procedure from delete to erase caused a failure
to transfer. This is consistent with Instructo-Soar, where general chunks learned for particular

procedures are always dependent on the procedure's name and other situational features.

5.7 Other theories

As a cognitive model, Instructo-Soar can be compared with other cognitive models of procedural

learning from instruction. Most recent models fall into two major classes: models based on ACT*,
and case-based models.
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5.7.1 ACT*-based theories

Many recent models of procedural learning are based on Anderson's ACT* model [Anderson.

1983; Anderson, 1987; Singley and Anderson, 1989]. Anderson's model employs a three stage

process. First, instructions are converted into a declarative form in long-term memory. Second, the

declarative memories guide task execution via weak methods, and through this process, new task-

specific rules for the procedure are learned. Third, these rules are tuned and strengthened through
future executions. The initial, declarative encoding of instructions is not use specific, but can be

accessed by any process. The final, proceduralized knowledge, on the other hand, is applicable only

in a specific set of situations. Transfer occurs when productions, as identical elements, apply across

multiple tasks.

This model has been applied to a large amount of both aggregate and individual human data.

It is intended to model procedural learning from a variety of types of input, for complex tasks like

physics problems. Instruction about these tasks often includes declarative information, like the fact

that F - rn.a, given in an unsituated way, rather than at a particular point in a particular problem.

This kind of unsituated information is outside of the scope of tutorial instruction as defined in this

thesis. To make use of such information when performing tasks, ACT* uses weak methods to decide

what to do, and uses the instructed information to guide the weak method in whatever way it can.

In contrast, Instructo-Soar's instructions are always either implicitly or explicitly situated; that

is, they are always given within the context of a particular problem. Thus, the "weak method"

used during task execution is simply to perform whatever action is indicated by the appropriate
instruction.

These caveats aside, Instructo-Soar has many similarities to the ACT*-based theories. As in

ACT*, initial reading of instructions produces long-term memories, but they are not fully opera-
tionalized; execution of tasks through deliberate recall of instructed information fosters learning of

general productions that encode the instructed knowledge; and final learning is use specific, produc-

ing automatized behavior by directly applying to particular situations. Transfer of learning occurs

when productions that were learned on an earlier task are applied to a later task.

However, there are differences. One is the form of initial learning. In Instructo-Soar, initial

learning is episodic in nature: highly specific and recognitional. The encoding of an instruction

exists declaratively within short term memory only for a short time, just after being read. To

recall past instructions, the system must use an effortful, reconstructive process. In ACT*-based

theories, instructions are encoded into a declarative long-term memory, that can be accessed without

a reconstructive process.

A second difference is the source of the power law of practice. In ACT*, during the first execution

of a task, the knowledge needed to perform that task is fully proceduralized (encoded into general

rules). The power law arises because of an additional strengthening mechanism applied during later

executions that makes the rules apply faster. In Instructo-Soar, knowledge is proceduralized across

multiple executions of the task, rather than being fully proceduralized during the first execution.

The power law arises from this incremental proceduralization.

A third difference is Instructo-Soar's emphasis on the use of prior knowledge and self-explanation

to produce general learning. Models built within the ACT* theory have focused primarily on
situations in which there is little prior domain knowledge, and initial performance of tasks requires

applying weak methods.

Other ACT* type theories include models by Lewis et al. [1989] and Bovair and Kieras [Bovair,

1991; Bovair and Kieras, 1991; Kieras and Bovair, 1986]. Lewis et al. [1989] describe a system, built

in Soar, that reads instructions to perform a subject's part in simple psychological experiments.

The instructions are steps in a procedure, that are read as a "recipe" in a non-interactive fashion.

Reading produces declarative structures, and the system learns the procedure by interpreting these
structures to execute the task. However, the procedure is simple enough that learning it does not

demand any generalization of the instructions. Bovair [1991] and Bovair and Kieras [1991,1986]

present learning results for subjects learning to operate an unknown device, and describe an ACT*-
like model of the results. However, the instructions in these experiments were non-interactive;

subjects were required to memorize all of the instructions for a procedure before attempting to



90

perform it. Learning under these conditions could be very different from interactive instruction

[Bovair and Kieras, 1991]. Indeed, one of Bovair and Kieras' key results concerned a drop in

reading times for instructions read after they had already been mastered by a student; in interactive
instruction, however, a student typically does not ever receive an instruction again once it has been

mastered. In addition, Bovair and Kieras' subjects (and thus their model) had no prior domain

knowledge. The model makes no use of prior knowledge or explanation; rather, learned rules are

generalized by heuristically applying syntactic generalization operations to them.

5.7.2 Case-based theories

In addition to ACT*-based theories, some recent research has attempted to produce case-based

theories of learning from instruction-like input. Recent case-based theories of instructional learning

include those of Alterman et ai. [1991], and Redmond [1992]. Unfortunately, these are difficult to

compare to Instructo-Soar directly, as they each attack different instructional tasks.

Alterman et al.'s [1991] FLOBN focuses on the task of altering an old procedure for use in a

new situation, through instruction. FLOBN begins with the knowledge of a procedure for using a

pay phone, and attempts to use it to make a call with an Airfone. When the procedure fails, the

system uses the instructions for the Airfone to alter its pay phone procedure, learning a new Airfone

procedure from the process. In contrast, Instructo-Soar focuses on the task of learning completely

new procedures and extensions of incomplete procedures from instruction. FLOBN's task involves

altering past domain knowledge that has been incorrectly applied; Instructo-Soar's task involves

extending past domain knowledge that is incomplete.

Redmond's [1992] CELIA is a learning apprentice system that learns by observing expert actions.
The system must infer the goals of various actions it observes, using a plan recognition process,

and learn to achieve these goals as the instructor does. CELIA targets learning from observation

of action sequences; in contrast, Instructo-Soar targets learning from interactive instruction, and

focuses on supporting a broad range of interactive flexibility. Because of the nature of interactive
instruction, Instructo-Soar always knows what goals it is pursuing (although it may not know

their termination conditions), and thus does have to deal with inferring the instructor's goals from

observations. On the other hand, in interactive instruction, steps can be skipped or commands can

be unknown to the agent altogether; CELIA does not need to deal with these possibilities, because

observed actions always occur in order, without skipping steps, and without unknown steps.

Although these models apply to different instructional tasks, they do have some overall similari-

ties. As described in Chapter 5, Instructo-Soar's episodic memory has a case-based flavor, although

the form of its final learning is more fine-grained, including separate, situated knowledge for each

individual step in a procedure. In addition, all three of the systems use an explanation-based

approach to learning, with inductive processes to fill in needed knowledge.

5.8 Conclusion

This chapter has examined Instrueto-Soar from a cognitive perspective, and elucidated its be-

havioral properties and predictions. Instructo-Soar is a nascent cognitive model. Certain aspects
of its behavior clearly do not model human performance (such as instruction initiated only by the

student), and its performance has not been matched to specific human data. Nevertheless, it is a

real cognitive model, in that it makes a number of testable behavioral predictions and meshes well

with general cognitive effects in human procedural learning and transfer.

In deriving Instructo-Soar's properties, the chapter presented an analysis of how being developed
within Soar affected Instructo-Soar. Proponents of unified theories of cognition make the claim that

working within a unified theory provides constraint for developing microtheories of specific behavior.

The analysis technique used in this chapter represents a general methodology for deriving that
constraint. Rather than only describing the UTC's impact in a broad, vague way, the analysis

factors the effects of individual properties and entailments of the UTC on the microtheory. This

type of fine grained analysis is a powerful tool for discovering which aspects of a unified theory are

crucial to a model developed within it, and which are unimportant. The analysis of Instructo-Soar
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indicates that development within a unified theory did indeed provide a large amount of constraint

on the model's design.



Chapter 6

Results, Limitations, and Future Work

This chapter reviews and analyzes the results achieved by Instructo-Soar and the theory of learn-

ing from tutorial instruction that it embodies. It begins by examining how Instructo-Soar measures

up to the requirements of a complete tutorable agent laid out in Chapter 1, and summarizing the

capabilities that the agent demonstrates. Instructo-Soar performs a number of distinct instructional

tasks, but all are based on the situated explanation method applied to a PSCM-based agent. The

agent's capabilities are demonstrated in an extended instructional scenario that is summarized here

and described in detail in Appendix A.

Following the discussion of results, the chapter presents a detailed analysis of the limitations of

the current theory and implemented agent, and (conversely) the opportunities for further research.
These arise from limitations inherent in the tutorial instruction paradigm, limits of the agent's

computational model and non-instructional capabilities, and incomplete solutions to each of the key

instructional problems: the mapping problem, the interaction problem, and the transfer problem.

Each of these is discussed in detail. Finally, to focus the discussion of future work, the chapter

makes a specific proposal for the next generation ofinstructable agent, that addresses an interrelated

subset of the present limitations.

6.1 Results

The ultimate goal of this line of research is to produce agents that can be instructed naturally

and flexibly, as humans can be. The first chapter developed a set of requirements for a complete

tutorable agent, meant to represent this goal. Instructo-Soar does not meet all of these requirements;
rather, from the complete requirements a subset of those relating to the interaction and transfer

problems were selected as targets for this research. Table 6.1 (a repeat of Table 4.1) shows the

targeted requirements of a tutorable agent, as they are met by Instructo-Soar.

In meeting the requirements of Table 6.1, Instructo-Soar moves closer to the goal of a complete

tutorable agent than previous learning apprentice systems. The requirements that have been met
include three crucial evaluation criteria:

1. The agent is able to learn all of the types of knowledge it uses in task performance from
instruction.

2. The agent supports full flexibility of knowledge content for instructions commanding actions.

That is, the instructor can give a command for a task at any point during instruction, whether

or not the agent knows the task or how to perform it in the current situation.

3. The agent can learn from implicitly situated instructions, and from each type of explicitly
situated instructions.

In meeting these requirements, Instructo-Soar displays some nineteen distinct instructional ca-

pabilities. These capabilities are listed in Table 6.2. An important point of this work is that this

92
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Requirement [ Met?

1. General learning from specific cases x/

2. Fast learning (each task instructed only once) x/

3. Maximal use of prior knowledge x/

4. Incremental learning x/

5. Ability to learn all types of knowledge used in task x/

performance
a. state inference _f

b. operator proposal x/

c. operator preferential: rejection _/

comparison x/

d. operator effects

e. operator termination

6. Agent-initiated instruction

7. Flexibility of knowledge content

a. full flexibility for action commands

b. others as appropriate

8. Situation flexibility

a. implicitly situated

[ Where described

Chapters 3-4
Section 3.4

Chapters 3-4

Chapters 3-4

Chapters 3-4

Section 4.1.1

Sections 3.4, 4.1-2
Section 4.1.4

Section 4.3

b. explicitly situated: hypothetical state

hypothetical goal

_f Sections 4.2.2-3

x/ Section 3.4

x/ Chapters 3-4

_f Chapters 3-4

_f Chapter 3

_f Chapter 4

Chapters 3-4

_/ Chapter 3

x/ Section 4.1

x/ Section 4.2

Table 6.1: The target requirements for a tutorable agent that are met by Instructo-Soar.

myriad of instructional behavior does not require nineteen different learning techniques, but arises

as a single general technique, situated explanation in a PSCM-based agent, is applied across the

broad range of situations required by the comprehensive learning task of tutorial instruction.

Although many of the requirements for a complete tutorable agent have been met, others have

not been. Instructo-Soar's performance on the complete set of requirements for a tutorable agent
is shown in Table 6.3. As the table indicates, Instructo-Soar has met or partially met seven of the

eleven criteria. Those that are not fully achieved indicate areas for further work, to be discussed

later in the chapter.
The next section turns to empirical evaluation of Instructo-Soar, and presents the results of an

instruction scenario demonstrating its capabilities.

6.1.1 Empirical evaluation

Most empirical evaluations of machine learning systems take one of four forms, each appropriate

for addressing different evaluation questions:

A. Comparison to other systems. This technique is useful for evaluating how overall performance

compares to the state-of-the-art. It can be used when there are other systems available that

do the same learning task. For example, a concept learner's performance might be compared

to ID3's.

B. Comparison to an altered version of the same system. Typically, the system is compared to
a version of itself without some key component (so called "lesion studies"), to evaluate the

impact of that component on the system's overall performance. This method is appropriate,

for instance, when a new component has been added to a standard method.

C. Measuring performance on a systematically generated series of problems. This technique

evaluates how the learning method is affected by single dimensions of the input. For example,

a concept learner might be tested with more and more noisy training data. This method can

be used when the input for the learning problem has dimensions that can be systematically
altered.
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Instructionalcapability Example Described

1. Learning completely new procedures pick up Sec. 3.4

2. Taking instruction to alter/verify newly in- pick up's termination Sec. 3.4.2

ferred knowledge (e.g. new operator's termi- conditions

nation conditions)

3. Extending a known procedure to apply in a put down before picking up Sec. 3.5
new situation

4. Hierarchical instruction: instructions for a teaching grasp within pick Sec. 3.4

new procedure embedded in other instruction up

5. Prohibited actions "Never grasp red blocks." Sec. 4.1.4

6. Explanations of prohibited actions "Red blocks are explosive." Sec. 4.1.4

7. Recovery from indirect achievement of a pro- closing hand around explo- See. 4.1.4
hibited state sive block

8. Inferences from simple statements - specific "The grey block is metal." Sec. 4.1.1

9. Inferences from simple statements - generic "White magnets are Sec. 4.1.1
powered."

10. Inferences from conditionals "if condition and condi- Sec. 4.1.1
tion then concluded state

feature"

11. Operators to perform for hypothetical goals "To turn on the light, push Sec. 4.2.1
the red button."

12. Operators to perform in hypothetical states "If the light is bright then Sec. 4.1.2

dim the light."

13. Contingency operators to perform in related "If block is metal then Sec. 4.1.3
situations grasp magnet"

14. Explanations of operators for hypothetical "Dim lights use little See. 4.1.2

states electricity."

15. Learning perceivable operator effects pushing the button dims Sec. 4.2.2

the light

16. Learning non-perceivable operator effects, moving down over a metal Sec. 4.2.3

and associated inferences to recognize the block when holding a pow-

effects ered magnet

17. Learning procedures in spite of an incomplete No frame axioms Sec. 3.6

domain theory experiment

18. Dealing with operator conflicts: learning two ways to grasp a small Sec. 4.3

which operator to prefer metal block

19. Dealing with operator conflicts: learning two ways to grasp a small Sec. 4.3
choices are indifferent metal block

Table 6.2: A list of instructional capabilities demonstrated by Instructo-Soar.
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Problem Requirement Metby lnstructo-Soar?
Mapping Mappingof allrepresentableinformation no (as neededto show other

capabilities)
Interaction Flexibleinitiationof instruction no (only impasse-drivenagent-

initiated)
Flexibility of instructional knowledgepartial (full flexibility for action
content commands)
Situationflexibility partial (implicitly and explicitly

situatedinstructions,but nomul-
tipleutterancehypotheticals)

Transfer Generallearningfromspecificcases yes(viasituatedexplanation)
Fastlearning yes(newproceduresonly taught

once)
Maximaluseofpriorknowledge yes
Incrementallearning yes
Abilityto learnall typesof knowledgeused yes(all PSCMknowledgetypes)
in taskperformance
Abilityto dealwith incorrectknowledge no (only extendingincomplete

knowledge)
Learningfrom instructioncoexistingwith no(notdemonstrated)
learningfromothersources

Table6.3:Instructo-Soar'sperformanceon therequirementsfor acompletetutorableagent.

D. Measuring performance on known hard problems. Known hard problems provide an evaluation

of overall performance under extreme conditions. For instance, concept learners' performance
is often measured on standard, difficult datasets. This method can be used when such bench-

mark problems are known and available.

Typically, there is a single kind of learning to be measured, and the goal is to show more powerful

learning of that kind along some metric (e.g., concept accuracy per training example). Often, these
evaluation methods are combined; for example, Shavlik et al. [1991] use (h), (C), and (D) to

extensively compare symbolic and neural concept learning algorithms.

These empirical evaluation techniques are difficult to apply in great depth to learning from
tutorial instruction for two reasons. First, whereas most machine learning efforts concentrate in

depth on a particular type of learning, tutorial instruction requires breadth of a wide range of learning

from a wide range of instructional interactions. Whereas depth can be measured by quantitative

performance, breadth is measured by qualitative coverage. Second, tutorial instruction has not been

extensively studied in machine learning, so there is not a battery of standard systems and problems

available. Nonetheless, evaluation techniques (B), (C), and (D) have been applied to Instructo-Soar

to address specific evaluation questions:

A. Comparison to other systems: This evaluation technique could not be applied because there
are not other tutorial instruction systems available for comparison.

n. Comparison to altered version: A "lesion study" was performed to illustrate the effect of prior

knowledge on the agent's performance, as described in Chapter 3. Without prior knowledge,

the agent is unable to explain instructions, and must resort to inductive methods combined

with instructor verification of the induced knowledge. This increases the amount of instruction

required and can reduce learning quality. Chapter 3 also compares the effects of versions of the

agent using different instruction reeall strategies (Figure 3.14). Other than prior knowledge

and recall strategies, it would be difficult to alter any single component of the agent and still

produce comparable performance.
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C. Performance on systematically varied input: The input to the agent - the instructions - can be

altered in a number of ways to produce comparable learning. An empirical alteration that is

described in Chapter 3 is the length of the instruction sequence for a procedure. As the graphs

of Figures 3.9 and 3.10 show, Instrueto-Soar's execution time for an instructed procedure varies
with the length of the instruction sequence, and drops with number of executions according to

a power law function until the procedure has been learned in general form. A second alteration

of instruction is the teaching of a procedure through hierarchical subtasks rather than as a

flat instruction sequence. Based on the power law result, it was predicted that hierarchical

instruction would have a learning time advantage over flat instruction. Figure 3.13 shows

empirical results confirming this prediction. A third alteration of instructional input is that

a large number of instruction orderings can be used to teach a particular procedure, since the
instructor may skip steps or organize the procedure into arbitrary subtasks during instruction.

Instructo-Soar is able to handle these possibilities, as described in Chapter 3. Rather than an

experimental analysis, a mathematical analysis has been performed to determine what range

of flexibility these abilities provides to an instructor. The analysis, presented in Appendix B,

finds that number of instruction sequences that can be used to teach a given procedure is very

large, growing exponentially with the number primitive steps in the procedure.

D. Performance on a known hard problem: Since learning from tutorial instruction has not been

extensively studied in machine learning, there are no standard, difficult problems. To create

such a problem, the key evaluation criteria for learning from tutorial instruction mentioned

at the beginning of this chapter were combined to produce a single scenario testing each of

them. Instrueto-Soar's performance on this scenario is presented in detail in Appendix A,

and summarized briefly below.

The instruction scenario created to evaluate Instructo-Soar's breadth of performance requires its

full range of learning and interaction capabilities. The scenario demonstrates eighteen of Instructo-

Soar's nineteen instructional capabilities from Table 6.2 (it does not include learning indifference in

selecting between two operators). It contains 100 sentences that teach a hierarchy of new operators,
organized as shown in Figure 6.1, and a variety of knowledge about controlling the light and using

the electromagnet. Instrueto-Soar begins with 2,579 productions, and learns 4,730 chunks during

the example, for a final total of 7,309 productions. The example takes 13,820 decision cycles (each

decision cycle, a Soar agent either creates a subgoal, or selects a problem space, a state, or an

operator to apply). The CPU time on an SGI Indigo R4000 is about 48 minutes.

The extended example demonstrates Instructo-Soar's variety of instructional capabilities, all

arising from a single learning theory as it is applied to various instructions and learning situations.

These capabilities operate together over the course of a complex instructional scenario to extend the

agent's domain knowledge in a significant way, including learning each type of PSCM knowledge.

6.2 Limitations and opportunities for further research

This thesis is about agents that are instructable through tutorial instruction. Thus, the lim-

itations of the work fall into three major categories. First, there are limitations inherent in the

paradigm of tutorial instruction itself. Second, the agent being taught has limited capabilities.

Third, there are limitations to the agent's instructability because of incomplete solutions to each of

the problems faced by an instructable agent: the mapping problem, the interaction problem, and

the transfer problem.

6.2.1 Limitations inherent in tutorial instruction

Tutorial instruction has been defined here as instruction that is both interactive and situated.

This is a powerful knowledge source for a learning agent, because it provides knowledge interactively

at the point of the agent's need that applies to particular situations the agent is facing or will face.

However, much instruction is either non-interactive or unsituated (or both). In non-interactive

instruction, the content and flow of information to the student is controlled primarily by the in-
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Figure 6.1 : Part of the hierarchy of operators learned during the extended example of Appendix A.

formation source. Examples include classroom lectures, instruction manuals and textbooks. One

issue in using this type of instruction is locating and extracting the information that is needed

for a particular problem at hand. Some information conveyed non-interactively may be situated;

e.g., in worked-out example problems [Chi el al., 1989; VanLehn, 1987]. However, non-interactive
instruction often includes unsituated information as well; e.g., general expository text.

Unsituated instruction conveys general or abstract knowledge that can be applied in a large

number of different situations. Such general purpose knowledge is often described as "declarative"

knowledge [Singley and Anderson, 1989]. For example, in physics class students are taught that

F - m. a; this general equation applies in specific ways to a great variety of situations. The

advantage of unsituated instruction is precisely this ability to compactly communicate abstract

knowledge that is broadly applicable [Sandberg and Wielinga, 1991]. Singley and Anderson [1989]

point out that to use such abstract knowledge, students must learn how it applies to specific

situations, thus transforming it from unsituated to situated knowledge. Their theory, described in

Chapter 5, proposes that this transformation occurs as students solve specific problems, guided by

unsituated knowledge gleaned from instruction.

A complete agent should be able to learn not only from tutorial instruction, but from non-
interactive and unsituated forms of instruction as well. These other types of instruction have not

been considered in this research.

6.2.2 Limitations of the agent

In addition to limitations inherent in tutorial instruction, an agent's own limitations constrain its

instructability. The theory of learning from tutorial instruction developed here specifies a particular

computational model in which to build agents (the problem space computational model); within

this computational model, an agent with a particular set of capabilities has been implemented to
demonstrate the theory. Thus, both the weaknesses of the computational model and the of the
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specificimplementedagentmustbeexamined.

Computational model

The problem space computational model plays a key role in the theory of tutorial learning. By

defining the basic computational operations of an intelligent agent, it provides an enumeration of

the types of knowledge that the agent uses, and thus should be able to learn from instruction. Its

universal subgoaling nature supports flexible interaction and multiple levels of embedded instruction

and learning.

The PSCM is well suited for situated instruction because of its inherently local control structure.

However, this makes it difficult to learn tasks requiring global control regimes through instruction,

because they must be translated into a series of local decisions that will each result in only local

learning. If an instructable system will always be applied to problems requiring a particular global

control method, it may be more effective (although less general) to build the control method into

the system from the start. This is the approach of method-based knowledge acquisition tools

[Birmingham and Klinker, 1993].

A second weakness of the PSCM is that it provides a theory of the types of knowledge used by

an intelligent agent, but gives no indication of the possible content of that knowledge. A content

theory of knowledge would be useful in specifying the complete space of possible instruction, to

provide a finer grained analysis of instructability within the knowledge types analysis provided

by the PSCM. Projects such as Cyc [Guha and Lenat, 1990] have the goal of developing detailed

knowledge content theories.

Within the PSCM, an agent has been implemented with a particular set of basic capabilities,

to develop and test the tutorial learning theory. Next, the limitations of this agent's capabilities
are discussed.

Implemented capabilities

The Instructo-Soar agent is limited in a number of ways that constrain its instructability:

Simple actions in a static, noise-free world. The agent's actions each have a definitive

starting point, and are defined by a single endpoint goal. This precludes actions with path

constraints (e.g., "Go to the other room but don't walk on the carpeting!"). The world is

noise-free in that actions always succeed (blocks never slip from the agent's hand), so it does
not need to reason about failed actions.

Serial execution of actions toward a single top level goal. Actions are executed

serially, and the agent has only a single top level goal at a time, although there may be

multiple embedded levels of operators selected to achieve it. This contrasts with dynamic

domains such as flying an airplane, where multiple goals at multiple levels of granularity may

be active at once [Pearson et al., 1993]. In such a domain, an agent might be instructed to

"Climb to 1000 feet while keeping the wings level, using a slow climb rate." While performing

that action, the agent could be given yet another unrelated action to perform, such as "Raise

your landing gear now."

Complete, perfect perception. The agent has complete, noiseless perception of its envi-

ronment. Thus, it never has to be told where to look, or asked to notice a feature that it

overlooked (although non-perceivable features may be unknown). In human instruction, on
the other hand, students must often be told where to attend or what features to notice, as

shown by the protocol excerpt in Figure 6.2.

No history. The agent does not keep track of past actions that have been performed (other

than its episodic instruction memory) or states that have been seen. Thus, it cannot be asked

to "do what you did before." Similarly, the agent cannot learn procedures that are defined by

a particular sequence of actions to perform, rather than a set of state conditions to achieve.
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[ Speaker

Instructor

Instruction Action

This is actually the real runway we're crossing, but taking off
we can take off so fast...

So, to maneuver the plane once we're flying.., in the air

You see that our altitude is increasing, points to altimeter

our climb rate gauge has gone up, points to climb rate

gauge

our speed has gone up points to
speedometer

you know, the gauges change accordingly.., motions to gauges

It's actually blue and brown.., points to false
horizon

This means we're going up at about a 10 degree points to line on false

angle, horizon

Figure 6.2: An example of human instruction in which the instructor directs the student's percep-
tual attention.

For example, it cannot be taught how to dance, because dancing does not result in a net

change to the external world.

No understanding of time or other resources. The agent does not reason about the
amount of time it takes to perform different tasks, or about other similar resources (e.g.,

its battery power). Thus, it cannot be taught to perform actions in a timely or resource-

dependent way.

No search; e.g., no means-ends analysis. Whenever the agent does not know what to

do next, it asks for more instruction. It never tries to determine a solution through reasoning

techniques like means-ends analysis. Human students, on the other hand, make extensive

use of means-ends analysis and related methods [Newell and Simon, 1972]. Adding these

capabilities to Instructo-Soar would produce a more realistic instructional dialogue, decreasing

the agent's need for instruction.

Single agent. There is only one agent in the domain. This precludes instruction teaching
multiple agents to perform a task together (e.g., two robots carrying a couch), and instructions

that require reasoning about other agents' potential actions (e.g., "Don't go down the alley,

because if you do the enemy will block you in.")

Producing a definitive agent has not been the goal of this work. Rather, the capabilities of the

agent have been developed to the point needed to provide a basic demonstration of each instructional

learning and interaction capability.

In addition to the tutorial instruction paradigm and the agent's capabilities, Instructo-Soar's

instructability is limited because its solutions to each of the key instructional learning problems -

mapping, interaction, and transfer - are incomplete in various ways. The following sections discuss

weaknesses and points for further research on each of these problems.

6.2.3 Mapping problem limitations

The mapping problem is the problem of mapping the language of instructions into the internal

language used by the agent. Instructo-Soar employs a straightforward approach to mapping, leaving
all of the problems of mapping difficult natural language constructions unaddressed. Some of the

relevant problems, as described in Section 1.2.1, include reference resolution, incompleteness, and

the use of domain knowledge in comprehension.
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Instructo-Soar uses a simple matching process to resolve referents. Real instruction, of course,

contains many difficult reference problems that require more complex methods. In addition, resolv-

ing a referent may require perceptual search (e.g., looking for "the block with a crack in it"), or
even further instruction, as in:

> Grab the explosive block.
Which one is thaf?

> The red one.

Instructo-Soar does not support this kind of interaction about referents.

Instructions that give incomplete information are common in human instructional dialogues. For

instance, objects to be acted upon might be incompletely specified, as in "Line up three objects."

Alternatively, an action itself may be incompletely specified, as in "Use the shovel" [Martin and

Firby, 1991]. Instructo-Soar does not handle these kinds of incomplete instructions; it requires well

specified actions with objects given in a particular order.

Finally, interpreting an instruction may require reasoning about the task itself. For example,

DiEugenio and Webber [1992] point out that in interpreting "Cut the square in half to form two

triangles," the correct cut can only be determined by reasoning about how it will produce the desired
result. There has been some initial work on how NL-Soar might make use of domain knowledge

during language comprehension [Lehman et al., 1993], but Instructo-Soar does not do this kind of

reasoning in interpreting instructions.
In addition to these general problems, Instructo-Soar does not support the full range of linguistic

forms that might be used to communicate each of the types of PSCM knowledge that it can
learn. For example, although the agent can learn about unknown effects of operators, it cannot be

told them directly; e.g., "Doing X causes Y to happen." Similarly, the agent learns termination
conditions for new operators after executing the operator, but cannot be told them directly; e.g.,

"A block is picked up when you are holding it and your arm is raised."

In fact, Instructo-Soar does not make full use of semantic information in creating a new operator.

For example, when it first reads "Move the red block left of the yellow block," the agent creates a

new operator, but does not make use of the semantic information communicated by "Move...to the

left of." A more complete agent would try to glean any information it could from the semantics of
an unfamiliar command.

6.2.4 Interaction problem limitations

The agent's shortcomings on the interaction problem center around the three requirements for

solving the problem in a complete tutorable agent: (1) flexible initiation of instruction, (2) full

flexibility of knowledge content, and (3) full situation flexibility. As Table 6.3 indicates, Instructo-

Soar does not provide flexible instruction initiation, and gives a partial solution to knowledge

content and situation flexibility.

A complete instructable agent should support instruction that is initiated by either the agent or
the instructor. In Instructo-Soar, instruction is initiated only by the agent. This precludes giving

instructions interrupting actions: "No! Don't push that button!"

A complete instructable agent should also allow flexible knowledge content in instructional

interaction. That is, the agent should allow the instructor to communicate any piece of knowledge

at any point that it is applicable within the current task and discourse context. Instructo-Soar

fulfills this requirement for commands to be performed, but the interaction is more limited for

other types of instructions.
Evaluating whether an instructable agent fulfills this requirement in general calls for a notion of

knowledge coherence: a complete instructable agent must accept any instruction that communicates

"coherent" knowledge at any point in the instructional dialogue. Defining knowledge coherence
is not difficult for action commands; any command that may lead towards goal achievement is

acceptable. Defining knowledge coherence for other types of knowledge is an area for further

research. Work on discourse plans in task-oriented dialogues (e.g., [Litman and Allen, 1990; Litman

and Allen, 1987; Allen and Perrault, 1980] may be useful in developing this notion.
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Finally, a complete instructable agent should support full situation flexibility, allowing instruc-

tions that apply either to the current situation or to a specified hypothetical situation. Instructo-

Soar meets this requirement by handling both implicitly and explicitly situated instructions, but

hypothetical situations can only be referred to within a single instruction. Human tutors often refer

to one hypothetical situation over the course of multiple instructions.
In Instructo-Soar, the situation an instruction applies to must be determined when that instruc-

tion is received. In human instruction, the goal of an action may be unknown when the action is

performed [Redmond, 1992]. For instance, the instructor may lead a student through a number of
actions and then say "We just built a tower." Currently, Instructo-Soar could not learn effectively

from this kind of interaction; it must have the goal (building a tower) indicated in advance of the

instructions for achieving it.

6.2.5 Transfer problem limitations

This work has focused most on solving the transfer problem - producing general learning from

tutorial instruction. As Table 6.3 indicates, most of the transfer problem criteria for a complete

tutorable agent have been achieved. The two criteria that have not been met are the ability to deal

with incorrect knowledge, and the coexistence of instruction with learning from non-instruction

sources. In addition, the methods that Instructo-Soar falls back on when it cannot explain instruc-

tions are not as powerful as they could be.
Instructo-Soar cannot recover from incorrect knowledge that leads to either invalid explanations

or incorrect external performance. Such incorrect knowledge may be a part of the agent's initial

domain theory, or may be learned through faulty instruction. The Einstellung effect, described

in Chapter 5, is a non-fatal example of this; once the agent has learned an inefficient method for

performing a task, it cannot go back and learn a more efficient method. More seriously, the agent
cannot recover from learning an incorrect method.

In order to avoid learning anything incorrect, whenever Instructo-Soar attempts to induce new

knowledge, it asks for the instructor's verification before adding the knowledge to its long-term

memory. Human students do not ask for so much verification; apparently they are able to jump to
incorrect conclusions, and then alter them later based on further information. Since Instructo-Soar

remembers a single version of each piece of knowledge, inability to recover from incorrect knowledge

rules out learning from multiple examples, which would require changing the single hypothesis (an

alternative would be to explicitly represent multiple hypotheses; e.g., in a version space [Mitchell,

1982]). Similarly, it precludes instruction by general case and exceptions; for instance, "Never grasp
red blocks," and then later, "It's ok to grasp the ones with safety signs on them." 1 Recovery from

incorrect knowledge is discussed further below as one component of a specific proposal for future
work.

The second transfer problem requirement that is not met by Instructo-Soar is instructional

learning's coexistence with learning from other knowledge sources. Nothing in Instructo-Soar's

theory or implementation precludes this coexistence, but it has not been produced since the focus

of this work is instruction. Learning from other knowledge sources may even be invoked through

instruction. For instance, the instructor may point to a set of objects and say "This is a tower,"

prompting learning from observation, or use an instruction containing an explicit metaphor to

invoke analogical learning.
Finally, Instructo-Soar's solution to the transfer problem is limited by three aspects of its imple-

mentation. First, Instructo-Soar does attempt to form explanations of state inference instructions.

This has not proven to be a problem for the simple state inferences learned thus far, but for more

complex inferences, explanation may improve learning. For example, by explaining the instruction

"If the switch is 'up', the control panel is powered," the agent could realize that the inference

also depends on the panel being plugged in. Second, Instructo-Soar's initially rote learning of in-
structions is only recalled in situations exactly like the ones the original instructions were given

in (until more general learning is completed); transfer might be improved by adding analogical
recall. Third, the heuristics that Instructo-Soar uses in inducing missing knowledge to complete

1 This example is due to Doug Pearson.
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explanations (e.g., the OP-to-G-path heuristic) are very simple. More complex approaches, such
as deeper causal theories or abductive reasoning, could lead to higher quality inductions.

6.3 The next generation instructable agent

Rather than attempt to address all of Instructo-Soar's limitations at once, this section proposes

a "next generation" instructable agent that addresses a set of the most crucial limitations. As

in the current work, the focus is on providing a broad range of flexible interaction and powerful

instructional learning, while addressing the mapping problem sufficiently to support these other

capabilities.

The proposed agent extends Instructo-Soar in four major ways:

. Use of means-ends analysis (agent capability). Rather than always asking for instruc-

tion, the agent will attempt to solve problems it faces through means-ends analysis (and

perhaps other simple search techniques), and only ask for help if this search fails. This will

reduce the amount of instruction that the agent requires, making its interaction with its in-

structor more realistic. For example, when told to "Move the arm above the red block,"

the agent would discover via search that it must first move the arm up, instead of requiring

further instruction for that step.

. Selective perception (agent capability). Rather than complete perception of its world,

the agent will have perception only of an attended region. The agent will perceive other areas

by shifting its attention; attending closely to an object will uncover more of its perceptual

details. This capability will allow the instruction techniques to be applied to more complex

domains where complete perception is intractable and noiseless perception is unrealistic. Se-

lective perception will permit instructions that direct perceptual attention to particular areas,

objects, or features, as in "Look for the cracked block."

. Simple observational learning (transfer problem). The agent willbe able to learn by

observing the effectsof itsactions. This isa simple way to learn operator effects(frame

axioms) that can laterbe used ininstructionexplanations.In addition,the agent may learn

by being directedto observe (e.g.,"That isa tower").

. Learning by reaching conclusions and revising as needed (transfer problem).

Rather than always assuring that knowledge being learned is correct - either supported by

prior knowledge (through explanation) or explicitly verified by the instructor - the agent will

learn from "reasonable" inferences without verification. The agent will ask for verifications

only in extreme cases. This does not require a major change to the current theory; it simply

means that the agent will rely more on completing explanations through induction (option

2.1 from Table 2.4) and less on further instruction and verification (option 2.2). Since the

inferred knowledge may be incorrect, however, the agent will require the ability to recover

from incorrect knowledge. There has been some work on recovering from incorrect knowledge

in Soar [Laird, 1988; Laird et al., 1989], but the broad range of possible incorrectness in an

instructable agent will require more research on basic recovery and theory revision techniques

(as, e.g., [Ourston and Mooney, 1990; Ginsberg, 1988]).

The combination of these changes will produce an agent that has a much more realistic pattern

of interaction with its instructor. The agent will require less instruction: it will solve tasks using

MEA when it can, it will learn about its environment from observation as well as instruction, and

it will make inductions without requiring continual verification. In addition, the agent itself will be

more realistic, with limited perception that requires the instructor to direct its attention, just as

would be required for a human student (or a real robot).

The new agent's learning will follow a different pattern than Instructo-Soar's. Instructo-Soar

starts with an incomplete domain theory and extends it further and further through instruction.

The new agent will start with a domain theory that may be both incomplete and incorrect. Rather
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thansimplybuildingup,it will 'jump around"in thespaceof theories,reachingconclusionsthat
arebeyondits currentknowledgeandinstructionalinput,but thenrevisingthemin lightof new
information.

6.4 Conclusion

Instructo-Soar's most important result is its coverage of a crucial subset of the criteria for a

complete tutorable agent. The key criteria that have been met include learning all types of knowl-

edge used in task performance, providing fully flexible interaction for commands, and supporting

both implicitly and explicitly situated instructions.

Empirical results demonstrate the agent's full range of instructional capabilities. While much

work in machine learning aims for depth at a particular kind of learning, Instructo-Soar demonstrates

breadth - of interaction with an instructor to learn a variety of types of knowledge - but all arising

from one underlying technique. This kind of breadth is crucial in building an instructable agent,

because of the great variety of instructions and the variety of knowledge that they can communicate.
Instructo-Soar has many weaknesses, arising from limitations of the tutorial instruction paradigm

itself, limitations of the agent's capabilities, and limited solutions to the mapping, interaction, and

transfer problems. The limitations indicate the kinds of steps that need to be taken to produce a

more complete instructable agent. A specific proposal was made to produce the next generation of

instructable agent by combining a particular set of the possible extensions.



Chapter 7

Conclusion

Current intelligent systems must be laboriously programmed for each new task they are to

perform. This thesis has presented an alternative: teaching intelligent agents to perform tasks

through tutorial instruction. Tutorial instruction is a powerful knowledge source for an intelligent

agent. It is both interactive and situated, providing needed knowledge from an expert that applies

directly to situations the agent is facing or will face. This type of instruction has been shown to be

highly effective for human learners, but has received only limited attention in artificial intelligence

and machine learning.
This thesis makes three major contributions to the study of tutorial instruction: (1) a task

analysis of the tutorial learning task, (2) a general theory of learning from tutorial instructions, and

(3) an implemented agent that embodies the theory, demonstrating a broad range of instructional

learning and interaction capabilities.
First, an analysis of the task faced by a tutorable agent revealed the three problems that such

an agent must solve: the mapping problem, the interaction problem, and the transfer problem.

For each problem, a set of requirements for a complete solution was developed. Taken together,

these requirements define the goal of the tutorial learning task, by indicating what is required of a

"complete" tutorable agent. As such, they provide an operational evaluation criterion for work on

tutorial learning, and serve to focus further research by indicating which parts of the problem have

not been sufficiently addressed.

Second, the thesis presents a theory of learning from tutorial instruction. The theory has two

parts: a computational model of an agent, and a learning method. The computational model,

called the problem space computational model, defines the learning task by specifying the types of

knowledge that an agent uses in task performance, and, thus, that it must be able to learn from

instruction. The learning method, called situated explanation, specifies how the agent can learn

general knowledge from instruction. For each instruction, the agent first determines what situation
the instructed action or inference is intended to apply to. Then, it attempts to explain how the

instruction leads to goal achievement in that situation, by internally projecting the instruction in

the situation. This explanation process can involve prior domain knowledge, induction, and/or

further instruction to complete an explanation.

Third, an implemented agent, Instructo-Soar, embodies the theory of tutorial learning and

demonstrates its performance. The agent is built within Soar, a problem solving and learning ar-

chitecture that follows the problem space computational model. By applying situated explanation

to a wide range of instructions in different situations, Instructo-Soar demonstrates a breadth of

interaction and learning capabilities, as is required by tutorial instruction. This breadth of capa-

bilities is produced by a general learning method applied within a general agent, rather than by

a grab-bag of specialized techniques. Instructo-Soar's instructional capabilities go beyond those

of previous instructable systems (e.g., learning apprentice systems), meeting a number of the key

requirements for tutorable agents. In particular, it is able to learn each of the types of knowledge

it uses in task performance from instruction; it supports flexible interaction for action commands,

allowing the instructor to skip steps and command new tasks at any point; and it can learn from
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bothfromimplicitlyandexplicitlysituatedinstructions.
In addition,Instructo-Soarprovidesthepotentialbasisfor a cognitivemodelof learningfrom

tutorialinstruction.It makesaspecificsetofbehavioralpredictionsthatarebroadlyconsistent with

what is known about human behavior. An analysis of the model revealed how it was affected by its

development within a unified theory of cognition, by factoring the impact of each of Soar's properties

and entailments on behavioral properties of the model. The analysis illustrates a methodology for

analyzing the effect of unified theories on microtheories developed within them.



Appendix A

An Example Instruction Scenario

This appendix describes Instructo-Soar's performance on a large instructional example. The

example includes 100 instructions, and demonstrates nearly all of Instructo-Soar's learning and

interaction capabilities (listed in Table 6.2). It includes examples of learning each of the types of

PSCM knowledge, and examples of each type of interaction the agent can handle. Many of the

examples in the body of the thesis are included in this example.

At the start of the example scenario, the Instructo-Soar agent has the initial knowledge described

in Chapter 3. That is, it knows primitive operators for moving its arm up, down, and into rela-

tionship with other objects (e.g., above them); it can open and close its hand; and it can dock with
tables. It does not know about the operation of the light or the electromagnet. In addition, before

the example starts, the agent has been taught to put objects down (by moving down and opening

its hand). 1 Throughout the scenario, the agent uses the "introspective" recall mode, attempting to

recall and generalize new procedures as soon as they are taught (as described in Chapter 3).

A.1 Example scenario

In what follows, the instructor's inputs are numbered, and shown in typewriter font; the agent's

responses are shown in italics; and the agent's actions in the external environment are indicated

by boldface print. Each of the agent's responses takes a simple, templated form; natural language
generation has not been the focus of this work. The amount of indentation indicates the "depth"

of an instruction in the interaction. That is, an instruction will be further indented if it teaches

a procedure commanded by an earlier instruction; indentation is not a part of the actual agent's

input. The world begins in the state shown in Figure A.1.

The instructor begins by teaching the agent some of the properties of magnets:

I> Red magnets are off.
Gotcha.

2> White magnets are powered.
Gotcha.

From each of these, the agent learns a state inference rule, as described in Section 4.1.1. In the

current state, the magnet is red, so the appropriate rule applies to conclude that the magnet has
status off.

Next, the instructor teaches the agent a new procedure.

3> Pick up the red block.

That's a new one for me. How do I do that?

aThis could have been included within the example (e.g., when the agent is first asked to put down a block).
However, "put down" is used to demonstrate extending another procedure (picking up something when holding
something else), and this is clearer if "put down" is already known.
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FigureA.I: Theinitialworldstatefortheexampleinstructionscenario.
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Theagentrealizesthisoperatorisunknown,andgeneratesa newoperatortemplateandnatural
languagemappingfortheoperator,asdescribedinSection3.4.Then,it asksfor moreinstructions.

4> Grasp the red block.

That's a new one for me. How do I do that?

Here, in instructing one new procedure, the instructor has asked the agent to perform another new

procedure. The agent again creates a new operator template, and asks for further instruction on

how to grasp a block.

5> If the red block is metal then grasp the magnet.

So I'm guessing the conditions for doing "grasp the magnet"

when your goal is "grasp the block" are:
the block is metal

Is that right?

6> Right.

Instruction 5 indicates a contingency action for grasping metal blocks. The red block is not metal,

but the instructor wants the agent to know what it should do if asked to grasp a metal block. The

agent's response, as described in Section 4.1.3, is to try to induce the conditions under which the

contingency action should be taken, and then ask the instructor to verify its induction. The rule
that is learned from this interaction, shown in Figure 4.6, proposes grasping the magnet in order

to grasp a metal block.
Now, the instructor continues to teach the agent how to grasp the red block.

7> Move to the yellow table.

Ok. (agent does so) What nezt?
8> Move above the red block.

I don't know how to do that. Will you teach me q.

9> Move up.
I get it/ Doing that lets me reach my goal.

(agent moves its arm up, and then above the red block.)
What nezf. q

The agent begins with the knowledge of how to move above objects, but only in the situation
where its arm is raised. When asked to move above the red block, the agent's arm is lowered, and

it does not know how to complete the action. Thus, it asks for help to extend its knowledge of

"move above" to this new situation, as described in Section 3.5. When told to move up, the agent

explains this instruction by internally projecting it, and realizes after moving up, it will be able to

successfully move above the red block. From this explanation, the agent learns a general operator

proposal rule, shown in Figure 3.15, that proposes moving the arm up whenever it is down and its

goal is to move above something. Then_ it carries out the instructed actions.
With the agent's hand above the red block, the instructor continues teaching the "grasp" pro-

cedure.

10> Move the arm down.

Ok. (agent does so) What nezt_
11> Close the hand.

Ok. (agent does so) What ned?

12> The operator is finished.

As described in Section 3.4.1, when the instructor indicates that the "grasp" operator is finished,

the agent attempts to induce termination conditions for the operator. This is done by comparing

the current state of the world, shown in Figure A.2, to the initial state (Figure A.1). The induction

is presented to the instructor for alteration and verification:
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FigureA.2:Thestate of the world after grasping the red block.



110

So I guess doing "grasp the block" means:
the gripper is above the block

the gripper is directly above the block

the gripper is closed

the gripper is holding the block
the robot is docked at the table

Is that right?

13> The robot need-not-be docked-at the yellow table.

So I guess doing "grasp the block" means:

Is that right?

14> The gripper need-not-be above the red block.

...

18> The gripper need-not-be directly-above the red block.

So I guess doing "grasp the block" means:

the gripper is closed

the gripper is holding the block

Is that right?

16> Eight.

Now I know something new/

Let me think through what we just did...

I get it! Doing that lets me reach my goal�
What next?

After the instructor verifies the goal concept for "grasp" (that the gripper is closed and holding the

block), the agent learns chunks that encode that knowledge, and then tries to recall and explain

the sequence of instructions for grasping. Starting internally from the initial state (Figure A.1),

it recalls and internally projects each command for performing "grasp the red block." Finally, the

block is grasped within the projection, and from this explanation, the agent is able to learn general

operator proposal rules for each command leading to grasping.

However, the agent has not finished picking up the red block. Now that the first command for

picking up ("Grasp the red block") is completed, it asks what to do next.

17> Move up.

Ok. (agent does so) What next?

18> The operator is :finished.

Again, the agent induces termination conditions, allows the instructor to alter and verify the in-

duction, and then introspects to generalize the "pick up" procedure:

So I guess doing "pick np the block" means:

the gripper is above the block

the gripper is directly above the block

the gripper is closed

the gripper is holding the block

the gripper is raised
the block is raised

the robot is docked at the table

Is that right?

19> The robot need-not-be docked-at the yellow table.

20> The gripper need-not-be above the red block.

...

21> The gripper need-not-be directly-above the red block.

So I guess doing _ick up the block" means:
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the gripper is closed

the gripper is holding the block

the gripper is raised
the block is raised

Is that right?

22> Right.
Now I know something new!

Let me think through what we just did...

I get it! Doing that lets me reach my goal!
What should I do now?

The agent is now holding the red block, and has learned a general procedure for picking up

blocks when its hand is empty to begin with. Next, this procedure is extended to apply to the

situation in which the agent is holding another object already.

23> Pick up the yellow block.

I don't know how to do that. Will you teach me?

24> Put the red block down.

I get it/ Doing that lets me reach my goal.

(agent puts the red block down, goes to the blue table,

and picks up the yellow block.)
What next ?

By internally projecting the effects of putting down the red block, the agent realizes that this action

enables it to pick up the yellow block, and learns operator proposal knowledge for putting an object

down in order to pick up another one.

Next, the agent is taught another new procedure: pushing a button.

25> Put down the yellow block.

Ok. (agent does so) What next?

26> Push the green button.

That's a new one for me. How do I do that?

27> Move to the grey table.

Ok. (agent does so) What next?

28> Move above the green button.

Ok. (agent moves up, and then above the block) What next?

Notice that to move above the green button the agent applies what it learned earlier when moving

above the red block - it moves up first.

29> Move down.

Ok. (agent does so) What next?

30> The operator is finished.

So I guess doing _push the button" means:

the gripper is above the button

the gripper is directly-above the button
the robot is docked-at the table

Is that right?

31> Right.

Now I know something new!

Let me think through what we just did...

I get it! Doing that lets me reach my goal!
What should I do now?

32> Go home.

Ok. (agent does so) What next?
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Next, the instructor teaches the agent how to turn on the light and magnet, but rather than

actually having the agent turn them on, hypothetical goals are used.

33> To turn on the magnet, grasp the magnet.

As described in Section 4.2, to learn from this type of instruction, the agent creates a hypothetical

situation with the goal of turning on the magnet, and then projects the commanded action (grasping

the magnet) to see if the goal is achieved. In this case, the agent has no knowledge of the effect of

grasping the magnet on its status, and so cannot explain the instruction. Thus, using the heuristics

described in Section 4.2.2, the agent guesses that grasping the magnet must cause it to turn on.

The instructor is asked to verify this induction:

Does this mean that an effect of "grasp the magnet" is that:

the magnet is now on

Is that right?
34> Yes.

I think that doing grasp the magnet causes:

the magnet to be on

under the following conditions:

the magnet is not on
the magnet is off

Are those the correct conditions?

35> Right.

Thanks for that advice, teach.

Once the effect of "grasp the magnet" is learned, the agent is able to complete its explanation of

instruction 33, and learns to propose grasping the magnet if its goal is to turn the magnet on. A

similar exchange occurs for turning on the light:

36> To turn on the light, push the red button.

Does this mean that an effect of "push the button" is that:

the light is now on

Is that right?
37> Yes.

I think that doing push the button causes:

the light to be on

under the following conditions:

the light is not on

the light is on the table
the button is on the table

Are those the correct conditions?

38> The red button must-be red.

I think that doing push the button causes:

the light to be on

under the following conditions:

the light is not on
the light is on the table
the button is on the table

the button is red

Are those the correct conditions?

39> Right.

Thanks for that advice, teach. What next?

40> Turn on the light.

Ok. (agent pushes the red button, and the light comes on)
What next?
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In this case, the instructor must indicate that the button to be pushed must be the red button.

The other button (the green one) has a different effect; it does not cause the light to come on.

The next instruction teaches the agent to always keep the light on, using hypothetical state (a

conditional). When the agent cannot explain why this is the proper course of action, it asks the

instructor why:

41> If the light is off then turn on the light.

Can you tell me why?
42> Trust me.

Thanks for that advice, teach. What next?

Since the instructor declines to give an explanation, the agent heuristically learns to propose turning

on the light whenever it is off, as described in Section 4.1.2.

Next, the agent is taught to control the light's brightness. It is taught new procedures for bright-

ening and dimming the light by pushing the green button. However, since it does not know about

the green button's effect on the light, it cannot form a complete explanation of these procedures,

and thus cannot learn them in general form at this point.

43> Brighten the light.

That's a new one for me. How do I do that?

44> Push the green button.

Ok. (agent does so) What next?

45> The operator is finished.

So I guess doing "brighten the light" means:

the gripper is above the button

the gripper is directly-above the button

the light is bright

Is that right?

46> The gripper need-not-be directly-above the green button.

...

47> The gripper need-not-be above the green button.

So I guess doing "brighten the light" means:

the light is bright

Is that right?

48> Right.

Let me think through what we just did...

My introspection failed.
What next?

49> Move up.

Ok. (agent does so) What next?

50> Dim the light.

That's a new one for me. How do I do that?

51> Push the green button.

Ok. (agent does so) What next?

52> The operator is finished.

So I guess doing "dim the light" means:

the gripper is directly-above the button

the gripper is lowered

the light is bright

Is that right?

53> The gripper need-not-be directly-above the green button.

...

54> The gripper need-not-be lowered.

So I guess doing "dim the light" means:

the hght is dim
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Is that rightf

85> Right.
Let me think through what we just did...

My introspection failed.

86> Nove up.

Ok. (agent does so) What next?

Now that the agent knows how to brighten and dim the light, the instructor teaches it that the

light should be kept dim. To explain why, the instructor points out that dim lights require less

electricity. This example is described in Section 4.1.2.

57> If the light is bright then dim the light.

Can you tell me why?

58> Dimmed lights use little electricity.
Gotcha.

89> Bright lights use much electricity.
Gotcha.

Thanks for that advice, teach. What next?

By recognizing the difference in use of resources between bright and dim lights, the agent

understands why the light should be kept dim. To test the agent's learning, at this point the light

is made bright. The agent immediately selects the operator it has learned to "dim the light":

(light becomes bright)

(agent selects operator to dim light)

However, the agent did not learn a general implementation for that operator. Thus, after "dim

the light" is selected, the agent recalls its past instruction, that it is supposed to "push the green
button." Since its explanation of this instruction has failed in the past, the agent tries to induce

general conditions for pushing the green button in this situation, using the heuristics described in
Section 3.6.

So I'm guessing the conditions for doing "push the button"

when your goal is "dim the light" are:

the gripper is not directly above the button

Is that right?

60> Right.

(the agent pushes the green button, and the light is dimmed.)

Next, the instructor will teach the agent about the effect of magnetism, in grasping metal blocks

using the magnet. First, the agent is taught two state inferences:

61> Grey blocks are metal.
Gotcha.

62> If the magnet is directly-above a block and

the magnet is powered and the block is metal

then the magnet is stuck-to the block.
Gotcha.

The rule learned from instruction 62 is shown in Figure 4.2.

In order to teach the agent about grasping blocks with the magnet, it must be taught how the

magnet can cause a block to be "held". That is, the agent must learn that an effect of moving

down when holding the magnet above a metal block is that the block becomes "held."

To teach this, the instructor must move the agent into the proper situation, shown in Figure A.3,

and then use a hypothetical goal instruction so that the agent can induce a new operator effect

for moving the arm down. The awkwardness of teaching this example reveals the limitations of

Instructo-Soar's interaction capabilities for non-action commands. The example is described further
in Section 4.2.3.
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Figure A.3: The initial state the agent is placed in for learning about grasping by using a magnet.

The agent is holding the magnet, and the magnet is on.
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63> Grasp the magnet.

Ok. (agent does so) What next?

64> Move above the grey block.

I don't know how to do that. Will you teach me?

65> Move to the yellow table.

I get it/ Doing that lets me reach my goal.

(agent moves to the yellow table, and then the hand is moved

up and then above the grey block.)
What next?

66> To grasp the grey block, move down.

Along the way to getting the agent into the situation of Figure A.3, the instructor extends the

agent's knowledge of moving above things to include the case where the agent is not at the right

table when asked to move above something (instructions 64 and 65).

When told "To grasp the grey block, move down," the agent creates a hypothetical situation

with a state like the current state, and a goal of grasping the grey block. It attempts to explain

why moving down achieves this goal, but the explanation is incomplete because the agent does not

know that the magnet causes the block to be "held." Thus, the agent infers a new effect of moving
down:

Does this mean that an effect of lowering the arm is that:

the gripper is now holding the block

Is that right?
67> Yes.

I think that doing lower the arm causes:

the gripper to be holding the block

under the following conditions:

the gripper is not holding the block

the gripper is above the block

the gripper is holding the magnet
Are those the correct conditions?

68> The magnet must-be powered.
I think that doing lower the arm causes:

the gripper to be holding the block
under the following conditions:

the gripper is not holding the block

the gripper is above the block

the gripper is holding the magnet

the magnet is on
Are those the correct conditions?

69> Right.

As described inSection4.2.3,thisinteractionallowsthe agent tolearna rulethat simulatesthe new

effectof moving down within internalprojections.However, the agent must stilllearnto conclude

that itisholding the metal block inactualexecution.When asked to actuallygrasp the grey block,

the agent expects to succeed aftermoving down, but does not, because itdoes not realizethat itis

"holding" the block with the magnet. As a result,itattempts to infera new stateinferencethat

willcomplete grasping ofthe block.

70> Grasp the grey block.

(agent moves the arm down, and the block gets stuck to the

magnet.)

So, can I infer that:

the gripper is holding the block

Is that right?
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71> Yes.

Why is the gripper holding the block now?

72> Because the gripper is holding the magnet and

the magnet is stuck-to the grey block.
Ok. What next?

73> Go home.

Ok. (agent does so) What next?

From this exchange, the agent learns to recognize that a block is held if it is stuck to the magnet,

and the magnet is held. This rule is shown in Figure 4.18.

Before the instructor can give further instructions, the light shuts off unexpectedly. The agent

responds by pushing the red button to turn the light back on.

(light goes off)

(agent moves to table, pushes red button, and the light comes on.)
What next?

At this point, the agent has learned how to pick up metal blocks using the magnet, and how to

pick up small blocks using its hand. When asked to pick up a small metal block (the blue block), it

has a conflict between these options, and asks for instruction to resolve the conflict. This capability
is described in Section 4.3.

74> The blue block is metal.

Gotcha.

75> Pick up the blue block.

These possibilities come to mind:

move to the yellow table

grasp the magnet
What should I do?

76> Move to the yellow table.

Ok. (agent does so)

These possibilities come to mind:
move above the block

grasp the magnet
What should I do?

77> Move above the blue block.

Ok. (agent does so, and then moves down.)
These possibilities come to mind:

close the hand

grasp the magnet
What should I do?

78> Close the hand.

Ok. (agent does so)
What next?

From this interaction the agent learns a series of operator comparison rules that prefer the correct

sequence of operators for grasping a small metal block by using the hand.

The next exchange illustrates learning about prohibited actions, as described in Section 4.1.4.

The instructor teaches the agent not to grasp green blocks. When the agent cannot understand

why, the instructor tells it that green blocks are explosive, allowing the agent to learn not to grasp

anything that is explosive.

79> Never grasp green blocks.

Why?

80> Green blocks are explosive.

Thanks/or that advice, teach. What next?
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81> Grasp the green block.
I cannot grasp the block because I know it won't work.

The agent has also learned to avoid the state in which it is grasping an explosive object. When

led to that state without being told to "grasp" explicitly, the agent grasps the explosive object

momentarily, realizes its error, and recovers from it. It also learns to avoid the action that led to

the bad state - here, to avoid closing its hand around an explosive object.

82> Open the hand.

Ok. (agent does so) What nez't?

83> Move above the green block.

Ok. (agent does so) What neztf
84> Move down.

Ok. (agent does so) What nezt?
85> Close the hand.

Ok. (agent does so)
This is a bad state to be in/

(agent opens its hand)
What nezt ?

The generality of the agent's learning can be tested by asking it to pick up another explosive object

besides the green block.

86> Blue blocks axe explosive.
Gotcha.

87> Pick up the blue block.
No way/

"Pick up the blue block" has grasping the blue block as a sub-operation. As soon as grasping

the block is proposed, the agent realizes it will not be able to complete the "pick up" task, and
abandons it.

Finally, to round out the hierarchy of new operators the agent has learned, the instructor teaches

it to line up rows of three blocks; in the course of doing that, the agent is taught to place one block
left of another.

88> Line-up the white block, the red block and the yellow block.

That's a new one for me. How do I do that?
89> Move the red block left of the white block.

That's a new one for me. How do I do that?

90> Pick up the red block.

Ok. (agent does so) What nezt?
91> Move to the blue table.

Ok. (agent does so) What next?
92> Move the arm left of the white block.

Ok. (agent does so) What next?
93> Put down the red block.

Ok. (agent does so) What next?

94> The operator is finished.

So I guess doing move blocks left of one another means:

[...many features...]

Is that right?

95> Right.
Let me think through what we just did...

I get it/Doing that lets me reach my goal.
What next?
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The agent has just learned how to move one block left of another when the blocks start out ell
different tables. Therefore, the operator proposal rule that it learned for picking up the first block

to move it left of the second one depends on the first one being on another table. When asked

to move the yellow block left of the red one, the blocks are on the same table, so the agent must

be told again to pick up the first block. This extends the "move left of" procedure to this new
situation.

96> Move the yellow block left of the red block.

I don't know how to do that. Will you teach me?

97> Pick up the yellow block.

I get it! Doing that lets me reach my goal.

(agent picks up the yellow block mad places it left of the red one.)
What next?

This illustrates one of the problems with such a situated learning process: the agent only learns

about the current situation, and must learn about others as they arise during later executions. The

alternative would be a process that considered many possible situations at learning time.

98> The operator is finished.

So I guess doing _line up blocks" means:

[...many features...]

Is that right?

99> Right.
Let me think through what we just did...

I get it! Doing that lets me reach my goal.

I00> Line-up the blue block, the white block and the purple block.

Ok. (agent does so) What next?

This finM command takes seventeen primitive actions to perform. The final state is shown in

Figure A.4.

A.2 Summary of Results

Instructo-Soar begins with 2,579 productions. Through the course of this example (including

learning the procedure "put down" before the scenario begins), the agent learns 4,730 chunks, for
a final total of 7,309 productions. The example run takes 13,820 Soar decision cycles, including the

application of 7,730 operators; the CPU time on an SGI Indigo R4000 is about 48 minutes.

Table A. 1 indicates the number of examples of each of Instructo-Soar's instructional capabilities

that are included in the scenario. Eighteen of its nineteen instructional capabilities are included;

learning indifference between operators is left out.

The instructions given in this example can be classified in various ways. There were five different

linguistic forms of instructions, as shown in Table A.2. The instructions can also be classified in
terms of their interactional properties. These include whether the instruction is explicitly situated

(in various ways), implicitly situated, or used to alter/verify of a piece of inferred knowledge. This

classification is given in Table A.3.

The example involved learning each of the types of PSCM knowledge. Table A.4 indicates the

amount learned of each type. Eight new procedures were learned, built up hierarchically as shown

in Figure 6.1.

Table A.5 gives a finer grained view of the learning that took place by classifying the individual
chunks that were learned. The table shows the number of chunks for various types of domain

knowledge, for episodic memory for natural language comprehension, and for "bookkeeping" of

various types. Note that the number of chunks does not directly correspond to the amount of each

type of PSCM knowledge learned, because sometimes multiple chunks encode what can be viewed

as a single piece of PSCM knowledge. The largest category of chunks by far were those associated

with episodic memory. This is because of the factored representation of instructional episodes in
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FigureA.4: The final state of the agent in the example scenario.
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Instructional capability Number

1. Learning completely new procedures 8

2. Taking instruction to alter/verify newly inferred knowledge {e.g. new oper- 15

ator's termination conditions)

3. Extending a known procedure to apply in a new situation 4

4. Hierarchical instruction: instructions for a new procedure embedded in other 2
instruction

5. Prohibited actions 1

6. Explanations of prohibited actions 1

7. Recovery from indirect achievement of a prohibited state 1

8. Inferences from simple statements - specific 1

9. Inferences from simple statements - generic 7

10. Inferences from conditionals 1

11. Operators to perform for hypothetical goals 3

12. Contingency operators to perform in related situations 1

13. Operators to perform in hypothetical states 3

14. Explanations of operators for hypothetical states 1

15. Learning perceivable operator effects 2

16. Learning non-perceivable operator effects, and associated inferences to rec- 1

ognize the effects

17. Learning procedures in spite of an incomplete domain theory 1

18. Dealing with operator conflicts: learning which operator to prefer 3

19. Dealing with operator conflicts: learning choices are indifferent 0

Table A.l: Instructional capabilities demonstrated in the extended example.

Form Example N umber

Imperative commands "Move to the grey table." 49

Simple statements "White magnets are powered." 28

Conditionals "If the light is on then turn off the light." 4

Purpose clauses "To turn on the light, push the red button." 3

Single words "Right." 16

Table A.2: Count of linguistic forms of instructions appearing in the extended example.

Category Number

Implicitly situated instructions 54

Explicitly situated instructions: 16

Hypothetical states 13

Hypothetical goals

simple statements 8
conditional inferences 1

conditional actions 3

prohibited actions 1
3

Verificational instructions 30

Table A.3: A classification of the interactive properties of instructions appearing in the extended

example.
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Type
Stateinferences

Number

Operator comparisons

10

Operator proposals 36

Operator rejections 2
3

Operator effects

Operator termination conditions 8

Total 57

Table A.4: The PSCM types of knowledge learned during the extended example.

Domain

Knowledge

Chunk type Number learned

24New operator templates (3/new operator)
New NL mappings (2/new operator)

Operator termination conditions (positive and

negative tests)

Operator proposals
State inferences

Operator effects

Operator comparisons

Operator rejections

16

37

36

25

2936Other Episodic memory

Knowledge Other natural language 1450
Associated with verification 39

Assorted bookkeeping and side effects 158

Total: 4730

Table A.5: Types of chunks learned during the extended example.

long-term memory, in which each feature of each natural language referent is stored in a separate

chunk, as described in Chapter 5.
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Appendix B

A Mathematical Analysis of Instruction

Sequences

One interaction requirement of tutorial instruction is the ability to accept any command that

communicates knowledge relevant to the task at hand, at any point. Instructo-Soar provides this

kind of flexibility for commands that indicate actions or tasks to perform. In teaching a procedure,

instructors do not always specify the primitive operators that make up the procedure in their

execution order. Rather, they form larger subtasks, indicate future operators before they can apply,

and make assumptions about the agent's ability to reach future states without needing instructions.

Supporting this kind of instruction means allowing the instructor to skip steps or command subtasks
whether the missing steps or the commanded subtasks are known to the agent or not.

This appendix addresses the question of how much flexibility this kind of interaction allows the

instructor. How variable can the instructions for a procedure be? That is, given a sequence of

physical operations to be carried out in performing a particular procedure, how many sequences of

instructions will produce that sequence of physical operations?

As will be shown, there are a large number of instruction sequences that can lead the agent

down the same path to a given goal. That is, the mapping from instruction sequences to execu-

tion sequences is many to one. The number of instruction sequences possible for a given execution

sequence can be derived mathematically by carefully defining and limiting the problem. The simpli-

fied instruction sequence problem analyzed in this appendix is overly constrained, but approximates

actual instruction well enough that the results are qualitatively correct, and provide a lower bound

on the number of instruction sequences possible in the general case.

The analysis shows that the number of legal instruction sequences that can produce a given

sequence of physical operations grows very quickly with the number of physical operations. Disre-

garding abstract instructions, it is found that for only six physical operations, over 100 instruction

sequences are possible; for seven, the number is over 400. Allowing abstract instructions adds

another exponential factor.

The results indicate the kind of flexibility required of an agent purporting to learn from tutorial

instruction. Previous instructable agents have largely avoided the problem of learning from variable

instruction sequences, either because they do not learn procedures from sequences of instruction

(e.g., SHRDLU [Winograd, 1972], HOMER [Vere and Bickmore, 1990]), or because they require

that instructions be given in the canonical execution order (e.g., using a robotic teach pendant

[Segre, 1987]).

B.1 Flexibility in procedural instruction

Consider being taught to change a tire. Say the desired sequence of physical operations is

<open-trunk, retrieve-j ack, place-jack-under-:frame,... >. This task might be taught in a

number of ways. For instance, the teacher might begin by saying "First, jack up the car." This does

not correspond to a single primitive operation, but rather is a macro-operator (that the student
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mayor maynot know).Or, theteachermightsay"Placethejackundertheframeof thecar."
assumingthatyoucaninferthefirst twooperations.Or, theinstructionsequencecouldbestarted
evenfurtheralongtheactualphysicaloperationsequence:"First,youneedto removethebolts."
Here,theoperationisabstract(sinceyoucan'tremoveall theboltsat once,it doesn'tcorrespond
to asinglephysicaloperation),andtheinstructorhasassumed(orplansto teachyoulater)that
youknowyouneedtojackup thecarfirst.

Thisexampleillustratestworeasonswhyaninstructormaynotteachataskbysimplyindicating
theexactsequenceofprimitiveoperatorsto becarriedout:

. The instructor might indicate an instruction that is applicable in a future state, assuming that
the student knows how to reach that future state from the current state. If the instructor's

assumption is incorrect, further instruction may be required. For example, if when giving you

directions to another office I say "Go down to the end of the hall, turn left, ..." I am assuming

that you know how to get to the hall. If you don't, I will need to tell you how (maybe, "Go

through that doorway"). Thus, the instructions are "out of order": I told you to go through

the doorway after I told you to go down the hall, but when executing the instructions, you

will go through the doorway first.

. The instructor may indicate an abstract operation or macro-operator that is not a primitive

operation for the student. This could occur because the instructor simply does not know

what operations the student knows, or because the instructor wants to teach the student a

useful hierarchy of operators that can be used for later tasks (e.g., remove-all-bolts may

be a useful macro).

B.2 Formalized Problem Definition

Consider a situation in which an agent is given instructions to reach a pre-specified goal. The

goal is reached by composing a set of known operators, each with pre- and post-conditions. The

instructor guides the system to the goal by indicating an operator to perform next. To begin, the

problem is limited to the case where each instruction directly corresponds to a single primitive

operator. However, the indicated operator may not be directly performable (its preconditions may

not be met). If it is not, the instructor must tell the system how to reach a state in which the

chosen operator can be performed.

A simplified version of the problem can be formalized as follows. Call the available operators

ol, o2, o3,..., oN, and the world states s (0), s (1), s (2) .... n (!i). Each operator oi has the precon-

dition that it is applicable from state s(i-1), and transforms the state to be s(i). The problem

is to get to state s(G), starting from state s(0).

Clearly, this problem is simplified in many ways from that of a full-blown agent. The states
follow a linear sequence and are uniquely transformed by each operator. In a real agent, different

operators can cause states to be transformed in a variety of ways. A real agent's operators will

change only a portion of the state; thus an operator's applicability can be generalized to consider

only the relevant portion. These possibilities are ignored in this analysis.

In addition, the problem as stated precludes higher level macro-operators that have no direct

implementation (do not directly transform the state), but are implemented by sequences of lower

level operators. These are considered below.

To better understand the type of operators being assumed for this analysis, consider again the

example of changing a tire. The operators available for instruction might be things like open-trunk,

retrieve-jack, place-jack-under-frame,remove-bolt, etc. Remove-bolt has the preconditions

that the jack is under the frame, the car is raised, the hubcap is removed, and you are holding the

wrench; its implementation is using the wrench to remove a bolt. Thus, each operator's implemen-

tation corresponds to the "last step" needed to achieve it.

One other constraint must be placed on the problem before the analysis can proceed. It is

assumed that if the system is instructed to carry out an operator whose preconditions are not met,

it creates a subgoal to reach a state where the preconditions are met. The instructor must then
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01,02,03 >

< 02,01,03 :>

03, 02, O1 >

<_ 01,03,02 >

03, 01,02 >

Figure B.I: Legal instruction sequences for reaching state s(3).

instruct the system on how to achieve that subgoal, before continuing to instruct on how to reach

the overall goal. For example, if the agent is in state s(1) and is instructed to perform operator

o3, the system will create a subgoal to reach state s(2). The instructor must then indicate how

this subgoal can be achieved (i.e., by performing o2). This is the one-goal-at-a-time constraint: the
instructions are constrained to apply to the most recent subgoal that has been formed.

B.3 Analysis

An instruction sequence is a sequence < oi,oj,o_,... > of operators such that the sequence

allows s(G) to be reached while obeying the one-goal-at-a-time constraint mentioned above. That

is, the instructor is required to instruct on how to complete the current subgoal before going on
to other instruction for the overall goal. This means that an operator may not be instructed until

all operators with lower indices that have been previously instructed are completed. For example,

to reach s(3), instruction sequence < o2, o3, ol > is prohibited. Operator 02 must be completed

(requiring the selection of ol) before 03 can be chosen.

Define f(G) to be the number of instruction sequences that will lead to goal s(G). The initial

state is s (0); thus, to achieve s (0), there is one possible instruction sequence (the empty sequence):

f(0) = 1. To reach s(1), the only possible sequence is < oa >, so f(1) = 1.
When the goal is s(2), either a forwards or a backwards ordering is possible. That is, the

instructions might be < ol,o2 > (forwards), or < o2, oi > (backwards). In the latter case, when

instruction 02 is given, the system is in state s(0), so o_ cannot be executed. Therefore, a subgoal
is formed to reach s(1). The second instruction tells how this subgoal can be achieved; once it

is, 02 applies. This corresponds to the example in which a robot is told "Go down the hall," but
does not know how to reach the hall, and so is next told, "Go through the doorway." Forwards and

backwards orderings are the only possibilities, so f(2) = 2. Note that in both cases the execution

sequence, that is, the order in which operations are actually executed, is 1 followed by 2.

For a goal of s(3), the situation is more complex. The instructor may indicate either ol, 02,

or 03 as the initial operator to be achieved. If the initial instruction is ol, the system moves to

state s(1) and is left with the problem of reaching s(3) from there. This is exactly analogous to

the problem of reaching s(2) starting from s (0), and thus there are f(2) instruction sequences to

complete it (here, < 02, 03 > and < o3, o2 >). If the initial instruction is o2, a subgoal is formed to

reach s(1); there are y(1) ways to do that (simply select ox). This leaves the problem of reaching

s(3) from s(2), which is analogous to reaching s(1) from s(0); there are, again, f(1) ways to do

that. Finally, if the initial instruction is 03, this leaves the problem of reaching s(2) from s(0),

and there are f(2) ways to do that. Thus:

f(3)=f(0), f(2)+f(1).f(1)+f(2).f(O)=5

The set of five legal sequences is shown in Figure B.1.

The pattern seen here continues for higher goals. Denote the number of sequences possible to

get from state s(i) to state s(j) as F(i,j). It is clear that F(i,j) =/(j - i). The goal s(4) has

the following legal instruction sequences:

ol followed by F(1,4) sequences of o2, o3, o4
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01,02, 03, 04

<_ 01,03,02,04 _>

<_ 01,04,03,02

02,01,04, 03

<_ 03,02,01,04 _>

<_ 04,01,03,02 _>

<_ 04,03,01,02 _>

<_ 01,02,04,03 _>

< 01,04,02,03 >

< 02,01,03,04 _>

<_ 03,01,02,04 _>

< 04,01,02,03 >

<_ 04, 02, 01,03

< 04, 03, 02, Ol >

Figure B.2: Legal instruction sequences for reaching state s(4).

02 followed by

03 followed by

04 followed by

Ol and then F(2, 4) sequences of o3, o4

F(0, 2) sequences of Ol, 02, and then 04

F(0, 3) sequences of Ol, o2, oa

This is:

1(4) = 1(0)'1(3) + 1(1). 1(2) + 1(2)'1(1) + f(3).1(0)

The set of 14 legal sequences is shown in Figure B.2.
It can be shown that this pattern continues for higher numbered goals. In general,

f(N) = f(O). f(g - 1) + 1(1)' f(N- 2) +1(2)- f(N- 3) +..-+ f(N- 1)-f(0)

This recurrence relation produces a sequence known in mathematics as the Catalan numbers. 1

Catalan numbers count many interesting sets, such as the set of binary trees with N + 1 leaves,

and the number of grid paths from (0,0) to (N,N) in a cartesian coordinate system that stay below

the diagonal line between those points. The closed form for Catalan numbers is:

1 (2n)f(n) - n + 1 n

1(5) is 42; f(6) is 132; f(7) is 429.

B.4 Adding Hierarchy

Considering only instructions that correspond directly to primitive operations, the analysis has
shown that even a short sequence of primitive operations can be instructed by a large number of

instruction sequences. Next, consider the possibility of instructions that impose hierarchy onto the

set of primitive operations; that is, instructions that correspond to multiple basic actions.

There may or may not be a "natural" hierarchy to impose upon a given set of primitive operators.

To be fully flexible, the agent must allow the instructor to impose any possible hierarchy onto the

domain. In order to get an idea for how large the number of possible hierarchies might be, consider

an example of imposing a hierarchical structure onto a sequence of primitive operations for lining

up two blocks. Two possible hierarchies for the goal of lining up blocks are shown in Figure B.3.

The total number of hierarchies possible for a sequence of N actions corresponds to the total

number of (either partial or complete) trees that can be produced with N leaves. The trees may be

partial because the instructor may instruct some actions at the base level, without including them

in a higher-level operation. The number of total trees with N leaves grows at least exponentially

in N - it is easy to show, for instance, that 2N-1 is a lower bound.

1Thanks to Dale Darrow of the Penn State University mathematics department for identifying this recurrence

relation.
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3

IMoveaboveb,ockII--q. Movedo.n._l Oos_ _rippe_.I_ Move.p. I

!

[ Line up the blocks]

[Pick up block I.l _ Move leftof 2._ Put I down. [

I Move down.[-_ OpentheWPPer.I

(a)

l

[Line uptheblocksj.

[Grab block 1. I

4-'--
3

[Move above block l.]---_ove down._

(b)

6 _.___i0
lid •
"1 Put ,t next to 2. I _'I Open the gripper. I

Move left of 2,_ Move down]

Figure B.3: Two possible instruction hierarchies for "Line up the blocks." Boldface boxes are

primitive operations; numbers indicate one possible ordering of the instructions.

The point issimply that an instructorcan impose any of a large (exponential) number of

hierarchicalstructuresonto a procedure,and an agent that learnsfrom instructionmust be able to

learnfrom any of these (although some may be more difficultto learn than others).

B.5 Conclusion

Although the analysis presented here is based on a simplified version of the problem, the point is

clear: a given procedure may be taught in a great number of ways. Since the simplifications reduce

the number of instruction sequences (by limiting the form of the states and operators), the results

can be viewed as a lower bound. In real instruction the number of legal instruction sequences for

a given procedure is even greater (although not all would be considered equally sensible).

The large number of possible instruction sequences indicates the amount of flexibility Instructo-

Soar provides to its instructor. By allowing the instructor to skip steps and hierarchically structure

procedures into subtasks in any way desired, Instructo-Soar can be taught a new procedure in any

of a large number of different ways.
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Appendix C

How chunking over internal projections produces

general rules

This appendix describes in some detail how Instructo-Soar's internal forward projection of an

instructed operator can result in learning general knowledge about the operator. In particular, it

describes the example of learning a general rule for moving to a table to pick up a block, shown in

Figure C.1, from the instructions for picking up a particular block. The overall example of learning

the "pick up" procedure from instruction is described in Chapter 3.

C.1 Chunking

General rules are created by Soar's learning mechanism, chunking, applied to the successful

forward projection of an instruction. Chunking is a form of explanation-based learning [Mitchell

el al., 1986; DeJong and Mooney, 1986], but is organized somewhat differently than standard

EBL methods like EBG [Mitchell et al., 1986]. The relationship between chunking and standard

EBL notions like training examples and goal concepts is described in more detail by Laird and

Rosenbloom [1986] and by Ellman [1988].

In Soar, learning occurs whenever a result is returned from within a subgoal to resolve an

impasse. The goal of the chunking process is to build a rule that will create the result of the

subgoal based directly on conditions of the initial situation before the impasse occurred. When

a similar situation occurs in the future, this rule will fire to produce the subgoal result directly,

avoiding the impasse altogether.

A prototypical case is diagrammed in Figure C.2. The circled letters are properties that can be

tested by rules. The arrows represent rule firings; the vertical dotted lines are the boundaries of

a subgoal. Here, an impasse occurs when Soar is in the situation with properties A, B, C, and D;

the impasse is resolved when resulting subgoal creates R. E,F, G, and H are intermediate results

created within the subgoal.

If the goal (higher-level operator) is new-op-14 with object <obj>, and

<obj> is sitting on a table <table>, and
the robot is not docked at <table>, and

<obj> is small, and

the gripper has scatus open,

then propose operator move-to-table (<table>).

Figure C.I: The general operator proposal rule learned from the instruction "Move to the yellow

table" (new-op-14 is the newly learned "pick up" operator).
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Figure C.2: An example of processing that leads to chunking.

When R is produced, chunking operates to create a chunk that will produce R directly from
the initial situation in the future, avoiding all of the processing in the subgoal. A chunk is built

through two steps:

. Back-tracing. Chunking begins by determining which conditions of the initial situation led

to the creation of the result. When the result is produced, chunking back-traces through the

processing that caused its creation. The back-trace moves back through the rules that applied

within the subgoal until it reaches the conditions of the initial situation that were tested. In

the case of Figure C.2, the back-trace starts from R, moves back to E and F, and then to A,

B, and C. Thus A, B, and C are the initial properties that led to R's creation, and chunking

creates a rule of the form A, B, C ---* R.

. Variablization. Next, the rule A, B, C _ R is made more general by converting certain

identifiers within the rule into variables. Constant values that were directly tested (e.g.,

color(red)) are not variablized, but all other identifiers are (e.g., pickup(bl2) becomes

pickup(<b>), where <b> is a variable). 1 Thus, the final result is a variablized form of the
rule A, B, C ---* R.

C.2 Chunking over forward projection

This same process applies to a more complex situation to learn the general move-to-table

chunk. The processing that causes the chunk to be learned - a situated explanation of the instruction

"Move to the yellow table" by forward internal projection - is shown in Figure C.3. In the figure,

the large arrowheads moving left-to-right represent impasses that lead to subgoals; the right-to-left

arrowheads at the bottom represent resolution of those impasses by returning the indicated results.

The agent begins in the state pictured, and selects new-opl4(blk-r) (the operator for picking up

the red block) to perform. An impasse arises because the agent does not know what sub-operator

to select to begin carrying out new-op-14. In the resulting subgoal, the agent attempts to recall

past instruction, and recalls "Move to the yellow table." Rather than immediately returning this

as the next operator to perform, the agent first attempts to evaluate it (by selecting the operator

eval(move-to-table(tbl-y))), to verify that it will be successful in the current situation. There

1The details of how Soar variablizes rules are given in [Laird et al., 1993].
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State:

Op: new-opl4(blk-r)

OpOse sub--operator:

ove-to-table(tbl-y)

Op: recall on(blk-r, tbl-y)
> move-to-table(tbl-y) open(gripper)

Op: eval[move-to-table(tbi-y)] I _ color(blk-r,red)
color(tbl-y,yellow)

move--to-table(tbl-y)

move-arm(above bik-r)

move-arm(down)

close-gripper

move-arm(up)

I _Successful eval'n

Learned rule: goal=new-op 14(<b>)
not at(robot, <t> ),
on( <b>, <t> ),

size( <b >,smaU ),
open(gripper)

propose move-to--table(<t>)

Figure C.3: How internally projecting an instruction leads to learning a general rule.
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is no directly available knowledge indicating this evaluation, so an impasse arises. In the resulting

subgoal (in the rightmost column of Figure C.3), an internal forward projection of the recalled

operator is carried out, in order to verify its successful use in the current situation.

The top of the rightmost column shows the starting state for the forward projection (a duplicate

of the pictured current state) as a set of properties. Starting from this state, the agent projects

the effects of each operator in the execution sequence of new-opl4, starting with the recalled

move-to-table operator. The projection moves from the top to the bottom of the figure. Each

arrow represents a piece of operator effects knowledge that the agent applies to move from one

state to another. These operator effects rules indicate the dependencies between each property in

the state after an operator is projected and the state it is projected from. Rather than reproduce

every property of every state, after the initial state the figure only shows the properties that the

projection depends on. The properties shown underlined in italics are the properties that hold in

the initial state, that are tested by rules during the projection.

After forward projecting the final execution step ofnew-opl4 (moving the arm up), the operator

test-goal is selected. This operator contains the knowledge of new-opl4's termination conditions;
it tests that the four termination conditions shown hold, and because they do, it declares the

forward projection a success. The goal of the projection has been successfully reached. Thus, a
successful evaluation of move-to-table(tbl-y) is returned, to resolve the impasse of the eval

operator. Because of this successful evaluation, the agent proposes the move-to-1;able(tbl-y)

operator to perform, resolving the initial impasse.
As mentioned, in Soar learning occurs whenever a result is returned from within a subgoal to

resolve an impasse. In this case, two results were returned from subgoals: the successful evaluation

of move-to-table from the projection subgoal, and the proposal of move-to-table to resolve the

initial impasse. Thus, two chunks are learned.

Consider chunking's performance to learn the operator proposal rule of Figure C.1, since it was

the primary target of the instruction. Chunking back-traces from the proposal of the operator, back

through the successful evaluation, and then through all of the rules that fired within the internal

projection to cause the evaluation. The back-trace ends when it reaches conditions from the initial

(pictured) state. The conditions found by this back-trace are those shown in underlined italics.
These conditions come from the initial state by being copied down from the pictured state to the

starting projection state (at the top of the rightmost column) and then tested within the projection

to produce the successful evaluation. In addition to these state conditions, new-opl4(blk-r) was

also tested in the projection (to produce the test-goal(new-opl4) operator).
After back-tracing gathers these conditions into a rule, the rule is variablized to produce the

resulting chunk shown at the bottom of the figure. Identifiers for things like the specific block and
table are variablized by chunking, while specific constants that were tested, like small, are not

variablized.

The resulting rule proposes moving to the appropriate table when trying to pick up (new-opl4)

something. Back-tracing over the successful forward projection allowed identification of the key

conditions under which moving to the table will be a successful action to take. Extraneous prop-

erties, like the colors of the block and table, were not included in the chunk because the success of

the projection did not depend on them.
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